Need Help? Get in touch, 24/7.
We're committed to providing the best customer service in the industry.

Black Box Brand Product Support

Technical Advice

 Or click "Talk With Us" in our top nav to chat with us or to have us call you.

Black Box Explains...LAN switches

Rush hour-all day, every day.

Applications such as document imaging, video/multimedia production, and intranetworking are very demanding. They generate huge data files that often must be transferred between stations based on strict timing requirements. If such traffic is not transmitted efficiently, you end up with jerky video, on-screen graphics that take forever to load, or other irritating, debilitating problems.

These problems arise because in traditional LANs, only one network node transmits data at a time while all other stations listen. This works in conventional, server-based LANs where multiple workstations share files or applications housed on a central server. But if a network has several servers, or if it supports high-bandwidth, peer-to-peer applications such as videoconferencing, the one-station-at-a-time model just doesn’t work.

Ideally, each LAN workstation should be configured with its own dedicated LAN cable segment. But that’s neither practical nor affordable. A far more reasonable solution is a network designed to provide clear paths from each workstation to its destination on demand, whether that destination is another workstation or server.

These vehicles clear the lanes.

Unlike bridges and routers, which process data packets on an individual, first-come, first-served basis, switches maintain multiple, simultaneous data conversions among attached LAN segments.

From the perspective of an end-user workstation, a switched circuit appears to be a dedicated connection-a direct, full-speed LAN link to an attached server or other remote LAN node. Although this technique is somewhat different from what a LAN bridge or router does, switching hubs are based on similar technologies.

Which route will you choose?

Switching hubs that use bridging technologies are called Layer 2 switches-a reference to Layer 2 or the Data-Link Layer of the OSI Model. These switches operate using the MAC addresses in Layer 2 and are transparent to network protocols. Switches that use routing technologies are known as Layer 3 switches, referring to Layer 3—the Network Layer—of the OSI Model. These switches, like routers, represent the next higher level of intelligence in the hardware hierarchy. Rather than passing packets based on MAC addresses, these switches look into the data structure and route it based on the network addresses found in Layer 3. They are also dependent on the network protocol.

Layer 2 switches connect different parts of the same network as determined by the network number contained with the data packet. Layer 3 switches connect LANs or LAN segments with different network numbers.

If you’re subdividing an existing LAN, obviously you’re dealing with only one network and one network number, so you can install a Layer 2 switch wherever it will segment network traffic the best, and you don’t have to reconfigure the LAN. However, if you use a Layer 3 switch, you’ll have to reconfigure the segments to ensure that each has a different network number.

Similarly, if you’re connecting existing networks, you have to examine the currently configured network numbers before adding a switch. If the network numbers are the same, you need to use a Layer 2 switch. If they’re different, you must use a Layer 3 switch.

When dealing with multiple existing networks, you’ll find they usually use different network numbers. In this case, it’s preferable to use a Layer 3 switch (or possibly even a full-featured router) to avoid reconfiguring the network.

But what if you’re designing a network from scratch and can choose either type of switch? Your decision should be based on the expected complexity of your LAN. Layer 3 routing technology is well suited for complex networks. Layer 2 switches are recommended for smaller, less complex networks.