Loading


Categories (x) > Industrial (x)

Results 51-60 of 415 << < 6 7 8 9 10 > >> 

Black Box Explains…Component vs. channel testing.

When using a Category 6 system, the full specification includes the testing of each part individually and in an end-to-end-channel. Because CAT6 is an open standard, products from different vendors... more/see it nowshould work together.

Channel testing includes patch cable, bulk cable, jacks, patch panels, etc. These tests cover a number of measurements, including: attenuation, NEXT, PS-NEXT, EL-FEXT, ACR, PS-ACR, EL-FEXT, PS-ELFEXT, and Return Loss. Products that are tested together should work together as specified. In theory, products from all manufacturers are interchangeable. But, if products from different manufacturers are inserted in a channel, end-to-end CAT6 performance may be compromised.

Component testing, on the other hand, is much stricter even though only two characteristics are measured: crosstalk and return loss. Although all CAT6 products should be interchangeable, products labeled as component are guaranteed to perform to a CAT6 level in a channel with products from different manufacturers.

For more information on cable, channel, and component specs, see below.

Buyer’s Guide: CAT5e vs. CAT6 Cable

Standard — CAT5e: TIA-568-B.2; CAT6: TIA-568-B.2-1

Frequency — CAT5e: 100 MHz; CAT6: 250 MHz

Attenuation (maximum at 100 MHz) —
Cable: CAT5e: 22 dB; CAT6: 19.8 dB
Connector: CAT5e: 0.4 dB; CAT6: 0.2 dB
Channel: CAT5e: 24.0 dB; CAT6: 21.3 dB

NEXT (minimum at 100 MHz) —
Cable: CAT5e: 35.3 dB; CAT6: 44.3 dB
Connector: CAT5e: 43.0 dB; CAT6: 54.0 dB
Channel: CAT5e: 30.1 dB; CAT6: 39.9 dB

PS-NEXT (minimum at 100 MHz) — 32.3 dB 42.3 dB

EL-FEXT (minimum at 100 MHz) —
Cable: CAT5e: 23.8 dB; CAT6: 27.8 dB
Connector: CAT5e: 35.1 dB; CAT6: 43.1 dB
Channel: CAT5e: 17.4 dB; CAT6: 23.3 dB

PS-ELFEXT (minimum at 100 MHz) — CAT5e: 20.8 dB; CAT6: 24.8 dB

Return Loss (minimum at 100 MHz) —
Cable: CAT5e: 20.1 dB; CAT6: 20.1 dB
Connector: CAT5e: 20.0 dB: CAT6: 24.0 dB
Channel: CAT5e: 10.0 dB; CAT6: 12.0 dB

Characteristic Impedance — Both: 100 ohms ± 15%

Delay Skew (maximum per 100 m) — Both: 45 ns

NOTE: In Attenuation testing, the lower the number, the better. In NEXT, EL-FEXT, and Return Loss testing, the higher the number, the better. collapse

  • Quick Start Guide... 
  • Industrial Managed Gigabit Ethernet PoE+ Switch (4-Port RJ-45, 2-Port SFP) QSG
    Quick Start Guide for the LPH2004A-2GSFP (Version 1)
 
  • Manual... 
  • Wireless Point-to-Multipoint Ethernet Extender Subscriber (2.4 GHz) QSG
    Quick Start Guide for the LWE120A (Version 1)
 

Black Box Explains...How fiber is insulated for use in harsh environments.

Fiber optic cable not only gives you immunity to interference and greater signal security, but it’s also constructed to insulate the fiber’s core from the stress associated with use in... more/see it nowharsh environments.

The core is a very delicate channel that’s used to transport data signals from an optical transmitter to an optical receiver. To help reinforce the core, absorb shock, and provide extra protection against cable bends, fiber cable contains a coating of acrylate plastic.

In an environment free from the stress of external forces such as temperature, bends, and splices, fiber optic cable can transmit light pulses with minimal attenuation. And although there will always be some attenuation from external forces and other conditions, there are two methods of cable construction to help isolate the core: loose-tube and tight-buffer construction.

In a loose-tube construction, the fiber core literally floats within a plastic gel-filled sleeve. Surrounded by this protective layer, the core is insulated from temperature extremes, as well as from damaging external forces such as cutting and crushing.

In a tight-core construction, the plastic extrusion method is used to apply a protective coating directly over the fiber coating. This helps the cable withstand even greater crushing forces. But while the tight-buffer design offers greater protection from core breakage, it’s more susceptible to stress from temperature variations. Conversely, while it’s more flexible than loose-tube cable, the tight-buffer design offers less protection from sharp bends or twists. collapse

  • Pdf Drawing... 
  • GigaStation2 Snap Fitting, BNC, Female/Female, White PDF Drawing
    PDF Drawing for FMT362-R2 (Version 1)
 
  • Manual... 
  • 10BASE-T/100BASE-TX In-Line Surge Protector Manual
    Manual for SP512A-R3 (Version 1)
 
  • Video...Hardened Managed Ethernet Switches Overview

    See how the LEH family of Hardened Managed Ethernet Switches provides increased reliability and redundancy in industrial networks. This brief overview covers how the switches are designed to withstand extreme... more/see it nowtemperatures and harsh conditions in a multitude of environments from the factory floor to traffic control. collapse


Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700


850-nm Ethernet Distance
1-GbE
OM3: 1000 m

OM4: 1000 m


10-GbE
OM3: 300 m

OM4: 550 m


40-GbE
OM3: 100 m

OM4: 150 m


100-GbE
OM3: 100 m

OM4: 150 m

collapse


Black Box Explains...Choosing cabinets and racks.



Why cabinets? Why racks?


A cabinet is an enclosure with a door (or doors); a rack is an open frame. There are several things you... more/see it nowshould consider when you’re deciding whether you need an enclosed cabinet or a rack.


First, what equipment will you be putting in it? The extra stability of a cabinet might be important if you’re installing large, heavy equipment like servers. But if you need frequent access to all sides of the equipment, an open rack might be more convenient. And if your equipment needs a lot of ventilation, you’ll have to be more careful about the air supply if you enclose it in a cabinet.


Second, in what environment will you be installing it? If the environment is open or dusty, for example, you might need the extra protection of an enclosed cabinet. On the other hand, a rack might be perfectly adequate in a well-maintained data center.


Don’t neglect aesthetics. Will customers or clients see your installation? A cabinet with a door looks much neater than an open rack. When you’re trying to create a professional image, everything counts.


Finally, there’s security. An enclosed cabinet can be locked with a simple lock and key.


On the other hand, there are advantages to open racks, too. It’s easier to get at all sides of the equipment. But you’ll have to take other steps to keep the equipment secure-keeping it in a locked room, for example.


Both cabinets and racks come in all sizes and in many different installation styles. Some are freestanding; some are designed to be mounted on a wall. Others sit on the floor but attach to the wall for more stability.


If you need to set up your installation in a hurry, you can order a preassembled cabinet. You’re ready to load your equipment as soon as the cabinet arrives.


Choosing the right server cabinet.

Consider this quick checklist of features when choosing a server cabinet:

  • High-volume airflow. The requirements for additional airflow increase as more servers are mounted in a cabinet. Additionally, manufacturers are making servers narrower to increase available space. But with more servers in the same amount of space, heat buildup is frequently a problem.
  • Extra depth to accommodate newer, deeper servers.
  • Adjustable rails.
  • Rails with M6 square holes. Although 10-32 tapped and drilled holes are sometimes still required, newer hardware has M6 square holes. Know which type of mounting equipment you’ll need.
  • Front and/or rear accessibility.
NEMA 12 certification.

The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact with the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.


Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible.


Choosing the right rack.

Before you choose a rack, you have to determine what equipment you need to house. This list can include CPUs, monitors, keyboards, modems, servers, switches, hubs, routers, and UPSs. Consider the size and weight of all your equipment as well. The rack must be large and strong enough to hold everything you have now, and you’ll also want to leave extra room for growth.

Most racks are designed to hold equipment that’s 19" (48.3 cm) wide. But height and depth may vary from rack to rack. Common rack heights range from 39" (99.1 cm) to 87" (221 cm).


Another measurement you should know about is the rack unit. One rack unit, abbreviated as U, equals 1.75" (4.4 cm). A rack that is 20U, for example, has 20 rack spaces for equipment, or is 35" high (88.9 cm).


Understanding cabinet and rack measurements.

The main component of a cabinet or rack is a set of vertical rails with mounting holes to which you attach your equipment or shelves. When you consider the width or height of the rack, clarify whether they are inside or outside dimensions.

The first measurement you need to know is the width between the rails. The most common size is 19 inches with hole-to-hole centers measuring 18.3 inches. But there are also 23-inch and 24-inch cabinets and racks. Most rackmount equipment is made to fit 19-inch rails but can be adapted to fit wider rails.


After the width, the most important specification is the number of rack units, abbreviated “U.” It’s a measurement of vertical space available on the rails. Because the width is standard, the amount of vertical space is what determines how much equipment you can actually install. Remember that this measurement of usable vertical space is smaller than the external height of the cabinet or rack.


One rack unit (1U) is 1.75 inches of usable vertical space. So, for example, a rackmount device that’s 2U high will take up 3.5 inches of rack space. A rack that’s 20U high will have 35 inches of usable space.

Because both racks and the equipment that fit in them are usually measured in rack units, it’s easy to figure out how much equipment you can fit in a given cabinet or rack.



Do you need a fan?

Even if your cabinet or rack is in a climate-controlled room, the equipment in it can generate a lot of heat. You may want to consider adding a fan to help keep your equipment from overheating. It’s especially important to have adequate ventilation in an enclosed cabinet.


Getting power to your equipment.

Unless you want to live in a forest of extension cords, you’ll need one or more power strips. Some cabinets come with power strips built in.


If you need to order a power strip, consider which kind will be best for your installation. Rackmount power strips come in versions that mount either vertically or horizontally. Some have outlets that are spaced widely to accommodate transformer blocks-a useful feature if your equipment uses bulky power transformers.


Surge protection is another important issue. Some power strips have built-in surge protection; some don’t. With all the money you have invested in rackmount equipment, you’ll certainly want to make sure it’s protected.


Any mission-critical equipment should also be connected to an uninterruptible power supply (UPS). A UPS keeps your equipment from crashing during a brief blackout or brownout and gives you enough time to shut down everything properly in an extended power outage. You can choose a rackmount UPS for the most critical equipment, or you can plug the whole rack into a standalone UPS.


Managing the cables.

Your equipment may look very tidy when it’s neatly stacked in a cabinet. But you still have an opportunity to make a mess once you start connecting it all. Unless you’re very careful with your cables, you can create a rat’s nest you’ll never be able to sort out.


There are many cabinet and rack accessories that can simplify cable organization. We have Cable Management Guides, Rackmount Cable Raceways, Horizontal Covered Organizers, Vertical Cable Organizers, Horizontal Wire Ring Panels, and Cable Manager Hangers-all designed to help you manage your cables more easily.


Plotting your connections in advance helps you to decide how to organize the cables. Knowing where the connectors are on your equipment tells you where it’s most efficient to run cables horizontally and where it’s better to run them vertically.

The important thing is to have a plan. Most network problems are in the cabling, so if you let your cables get away from you now, you’re sure to pay for it down the road.


Asking for help.

When you’re setting up a cabinet or rack, you have a lot of different factors to consider. Black Box Tech Support is always happy to help you figure out what you need and how to put it together. For cabinets and racks solutions, call our Connectivity Group at 724-746-5500, press 1, 2, 2.

collapse


Product Data Sheets (pdf)...Async/Sync Industrial Line Driver

Results 51-60 of 415 << < 6 7 8 9 10 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services