Loading


Categories (x) > Industrial (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 63 1 2 3 4 5 > >> 

Black Box Explains...Optical isolation and ground loops.

Optical isolation protects your equipment from dangerous ground loops. A ground loop is a current across a conductor, created by a difference in potential between two grounded points, as in... more/see it nowequipment in two buildings connected by a run of RS-232 or other data line. When two devices are connected and their potentials are different, voltage flows from high to low by traveling through the data cable. If the voltage potential is large enough, your equipment won’t be able to handle the excess voltage and one of your ports will be damaged.

Ground loops can also exist in industrial environments. They can be created when power is supplied to your equipment from different transformers or when someone simply turns equipment on and off. Ground loops can also occur when there is a nearby lightning strike. During an electrical storm, the ground at one location can be charged differently than the other location, causing a heavy current flow through the serial communication lines that damage components.

You can’t test for ground loops. You don’t know you have one until a vital component fails. Only prevention works. For data communication involving copper cable, optical isolation is key.

With optical isolation, electrical data is converted to an optical beam, then back to an electrical pulse. Because there is no electrical connection between the DTE and DCE sides, an optical isolator— unlike a surge suppressor—will not pass large sustained power surges through to your equipment. Since data only passes through the optical isolator, your equipment is protected against ground loops and other power surges. collapse


Black Box Explains...Upgrading from VGA to DVI video.

Many new PCs no longer have traditional Cathode Ray Tube (CRT) computer monitors with a VGA interface. The latest high-end computers have Digital Flat Panels (DFPs) with a Digital Visual... more/see it nowInterface (DVI). Although most computers still have traditional monitors, the newer DFPs are coming on strong because flat-panel displays are not only slimmer and more attractive on the desktop, but they’re also capable of providing a much sharper, clearer image than a traditional CRT monitor.

The VGA interface was developed to support traditional CRT monitors. The DVI interface, on the other hand, is designed specifically for digital displays and supports the high resolution, the sharper image detail, and the brighter and truer colors achieved with DFPs.

Most flat-panel displays can be connected to a VGA interface, even though using this interface results in inferior video quality. VGA simply can’t support the image quality offered by a high-end digital monitor. Sadly, because a VGA connection is possible, many computer users connect their DFPs to VGA and never experience the stunning clarity their flat-panel monitors can provide.

It’s important to remember that for your new DFP display to work at its best, it must be connected to a DVI video interface. You should upgrade the video card in your PC when you buy your new video monitor. Your KVM switches should also support DVI if you plan to use them with DFPs. collapse


Black Box Explains... GBICs

A Gigabit Interface Converter (GBIC) is a transceiver that converts digital electrical currents to optical signals and back again. GBICs support speeds of 1 Gbps or more and are typically... more/see it nowused as an interface between a high-speed Ethernet or ATM switch and a fiber backbone. GBICs are hot-swappable, so switches don’t need to be powered down for their installation. collapse


Black Box Explains...DIN rail usage.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...DIN rail.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...Breakout-style cables.

With breakout- or fanout-style cables, the fibers are packaged individually. A breakout cable is basically several simplex cables bundled together in one jacket. Breakout cables are suitable for riser and... more/see it nowplenum applications, and conduit runs.

This differs from distribution-style cables where several tight-buffered fibers are bundled under the same jacket.

This design of the breakout cable adds strength to the cable, although that makes it larger and more expensive than distribution-style cables.

Because each fiber is individually reinforced, you can divide the cable into individual fiber lines. This enables quick connector termination, and eliminates the need for patch panels.

Breakout cable can also be more economical because it requires much less labor to terminate.

You may want to choose a cable that has more fibers than you actually need in case of breakage during termination or for future expansion. collapse


Black Box Explains...50-micron vs. 62.5-micron fiber optic cable.

The background
As today’s networks expand, the demand for more bandwidth and greater distances increases. Gigabit Ethernet and the emerging 10 Gigabit Ethernet are becoming the applications of choice for current... more/see it nowand future networking needs. Thus, there is a renewed interest in 50-micron fiber optic cable.

First used in 1976, 50-micron cable has not experienced the widespread use in North America that 62.5-micron cable has.

To support campus backbones and horizontal runs over 10-Mbps Ethernet, 62.5 fiber, introduced in 1986, was and still is the predominant fiber optic cable because it offers high bandwidth and long distance.

One reason 50-micron cable did not gain widespread use was because of the light source. Both 62.5 and 50-micron fiber cable can use either LED or laser light sources. But in the 1980s and 1990s, LED light sources were common. Since 50-micron cable has a smaller aperture, the lower power of the LED light source caused a reduction in the power budget compared to 62.5-micron cable—thus, the migration to 62.5-micron cable. At that time, laser light sources were not highly developed and were rarely used with 50-micron cable—mostly in research and technological applications.

Common ground
The cables share many characteristics. Although 50-micron fiber cable features a smaller core, which is the light-carrying portion of the fiber, both 50- and 62.5-micron cable use the same glass cladding diameter of 125 microns. Because they have the same outer diameter, they’re equally strong and are handled in the same way. In addition, both types of cable are included in the TIA/EIA 568-B.3 standards for structured cabling and connectivity.

As with 62.5-micron cable, you can use 50-micron fiber in all types of applications: Ethernet, FDDI, 155-Mbps ATM, Token Ring, Fast Ethernet, and Gigabit Ethernet. It is recommended for all premise applications: backbone, horizontal, and intrabuilding connections, and it should be considered especially for any new construction and installations. IT managers looking at the possibility of 10 Gigabit Ethernet and future scalability will get what they need with 50-micron cable.

Gaining ground
The big difference between 50-micron and 62.5-micron cable is in bandwidth. The smaller 50-micron core provides a higher 850-nm bandwidth, making it ideal for inter/intrabuilding connections. 50-micron cable features three times the bandwidth of standard 62.5-micron cable. At 850-nm, 50-micron cable is rated at 500 MHz/km over 500 meters versus 160 MHz/km for 62.5-micron cable over 220 meters.

Fiber Type: 62.5/125 µm
Minimum Bandwidth (MHz-km): 160/500
Distance at 850 nm: 220 m
Distance at 1310 nm: 500 m

Fiber Type: 50/125 µm
Minimum Bandwidth (MHz-km): 500/500
Distance at 850 nm: 500 m
Distance at 1310 nm: 500 m

As we move towards Gigabit Ethernet, the 850-nm wavelength is gaining importance along with the development of improved laser technology. Today, a lower-cost 850-nm laser, the Vertical-Cavity Surface-Emitting Laser (VCSEL), is becoming more available for networking. This is particularly important because Gigabit Ethernet specifies a laser light source.

Other differences between the two types of cable include distance and speed. The bandwidth an application needs depends on the data transmission rate. Usually, data rates are inversely proportional to distance. As the data rate (MHz) goes up, the distance that rate can be sustained goes down. So a higher fiber bandwidth enables you to transmit at a faster rate or for longer distances. In short, 50-micron cable provides longer link lengths and/or higher speeds in the 850-nm wavelength. For example, the proposed link length for 50-micron cable is 500 meters in contrast with 220 meters for 62.5-micron cable.

Migration
Standards now exist that cover the migration of 10-Mbps to 100-Mbps or 1 Gigabit Ethernet at the 850-nm wavelength. The most logical solution for upgrades lies in the connectivity hardware. The easiest way to connect the two types of fiber in a network is through a switch or other networking “box.“ It is not recommended to connect the two types of fiber directly. collapse


Black Box Explains…Component vs. channel testing.

When using a Category 6 system, the full specification includes the testing of each part individually and in an end-to-end-channel. Because CAT6 is an open standard, products from different vendors... more/see it nowshould work together.

Channel testing includes patch cable, bulk cable, jacks, patch panels, etc. These tests cover a number of measurements, including: attenuation, NEXT, PS-NEXT, EL-FEXT, ACR, PS-ACR, EL-FEXT, PS-ELFEXT, and Return Loss. Products that are tested together should work together as specified. In theory, products from all manufacturers are interchangeable. But, if products from different manufacturers are inserted in a channel, end-to-end CAT6 performance may be compromised.

Component testing, on the other hand, is much stricter even though only two characteristics are measured: crosstalk and return loss. Although all CAT6 products should be interchangeable, products labeled as component are guaranteed to perform to a CAT6 level in a channel with products from different manufacturers.

For more information on cable, channel, and component specs, see below.

Buyer’s Guide: CAT5e vs. CAT6 Cable

Standard — CAT5e: TIA-568-B.2; CAT6: TIA-568-B.2-1

Frequency — CAT5e: 100 MHz; CAT6: 250 MHz

Attenuation (maximum at 100 MHz) —
Cable: CAT5e: 22 dB; CAT6: 19.8 dB
Connector: CAT5e: 0.4 dB; CAT6: 0.2 dB
Channel: CAT5e: 24.0 dB; CAT6: 21.3 dB

NEXT (minimum at 100 MHz) —
Cable: CAT5e: 35.3 dB; CAT6: 44.3 dB
Connector: CAT5e: 43.0 dB; CAT6: 54.0 dB
Channel: CAT5e: 30.1 dB; CAT6: 39.9 dB

PS-NEXT (minimum at 100 MHz) — 32.3 dB 42.3 dB

EL-FEXT (minimum at 100 MHz) —
Cable: CAT5e: 23.8 dB; CAT6: 27.8 dB
Connector: CAT5e: 35.1 dB; CAT6: 43.1 dB
Channel: CAT5e: 17.4 dB; CAT6: 23.3 dB

PS-ELFEXT (minimum at 100 MHz) — CAT5e: 20.8 dB; CAT6: 24.8 dB

Return Loss (minimum at 100 MHz) —
Cable: CAT5e: 20.1 dB; CAT6: 20.1 dB
Connector: CAT5e: 20.0 dB: CAT6: 24.0 dB
Channel: CAT5e: 10.0 dB; CAT6: 12.0 dB

Characteristic Impedance — Both: 100 ohms ± 15%

Delay Skew (maximum per 100 m) — Both: 45 ns

NOTE: In Attenuation testing, the lower the number, the better. In NEXT, EL-FEXT, and Return Loss testing, the higher the number, the better. collapse


Black Box Explains...How fiber is insulated for use in harsh environments.

Fiber optic cable not only gives you immunity to interference and greater signal security, but it’s also constructed to insulate the fiber’s core from the stress associated with use in... more/see it nowharsh environments.

The core is a very delicate channel that’s used to transport data signals from an optical transmitter to an optical receiver. To help reinforce the core, absorb shock, and provide extra protection against cable bends, fiber cable contains a coating of acrylate plastic.

In an environment free from the stress of external forces such as temperature, bends, and splices, fiber optic cable can transmit light pulses with minimal attenuation. And although there will always be some attenuation from external forces and other conditions, there are two methods of cable construction to help isolate the core: loose-tube and tight-buffer construction.

In a loose-tube construction, the fiber core literally floats within a plastic gel-filled sleeve. Surrounded by this protective layer, the core is insulated from temperature extremes, as well as from damaging external forces such as cutting and crushing.

In a tight-core construction, the plastic extrusion method is used to apply a protective coating directly over the fiber coating. This helps the cable withstand even greater crushing forces. But while the tight-buffer design offers greater protection from core breakage, it’s more susceptible to stress from temperature variations. Conversely, while it’s more flexible than loose-tube cable, the tight-buffer design offers less protection from sharp bends or twists. collapse


Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700


850-nm Ethernet Distance
1-GbE
OM3: 1000 m

OM4: 1000 m


10-GbE
OM3: 300 m

OM4: 550 m


40-GbE
OM3: 100 m

OM4: 150 m


100-GbE
OM3: 100 m

OM4: 150 m

collapse

Results 1-10 of 63 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services