Loading


Categories (x) > Datacom (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 47 1 2 3 4 5 > 

Black Box Explains... Single-Mode Fiber Optic Cable

Multimode fiber cable has multiple modes of propagation—that is, several wavelengths of light are normally used in the fiber core. In contrast, single-mode fiber cable has only one mode of... more/see it nowpropagation: a single wavelength of light in the fiber core. This means there’s no interference or overlap between the different wavelengths of light to garble your data over long distances like there is with multimode cable.

What does this get you? Distance–up to 50 times more distance than multimode fiber cable. You can also get higher bandwidth. You can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber cable. The actual speed and distance you get will vary with the devices used with the single-mode fiber. collapse


Black Box Explains...DDS vs. T1.

DDS (Digital Data Service) is an AT&T® service that transmits data digitally over dedicated leased lines. DDS lines use four wires, and support speeds up to 56 kbps; however, DDS... more/see it nowis actually a 64-kbps circuit with 8 kbps being used for signaling. You can also get 64-kbps (ClearChannel™) service. Since the transmission is digital, no modems are needed. Dedicated digital lines are ideal for point-to-point links in wide-area networks.

T1 is a dedicated transmission line operating at 1.544 Mbps. It’s comprised of 24 DSOs, each supporting speeds of 64 kbps. The user sends data at N x 56 or N x 64 over T1 circuits. T1 operates over twisted-pair cable and is suitable for voice, data, and image transmissions on long-distance networks. collapse


Black Box Explains...T1 and E1 benefits.

If you manage a heavy-traffic data network and you demand high bandwidth for high speeds, Black Box has what you need to send your data digitally over super-fast T1 or... more/see it nowE1 communication lines.

Both T1 and E1 are foundations of global voice communication.
Developed more than 30 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but faster. T1 sends data up to 1.544 Mbps. E1 supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there—fast!

Both services provide flexibility for a multitude of applications. Whether you need to drive a private, point-to-point line or a high- speed circuit, provide corporate access to the Internet or inbound access to your own webserver, or support a voice/data/fax/video WAN that extends halfway around the world, T1 or E1 can make the connection.

Both offer cost-effective connections.
In recent years, competition among telco service providers has led to increasingly more affordable prices for T1 and E1 services. In fact, most companies seriously considering a shift to T1 or E1 will find they can negotiate even better rates with just a little comparative cost analysis.

Some typical applications include:
• Accessing public Frame-Relay networks or public switched telephone networks for voice and fax.
• Merging voice and data traffic. A single T1 or E1 line can give you several additional voice and data lines at no additional cost.
• Making LAN connections. If you’re linking LANs, a T1 or E1 line offers excellent performance.
• Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other graphics with large files. collapse


Black Box Explains...How computer speeds are enhanced with PCI buses and UARTs.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. The PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed... more/see it nowperipherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

UARTs (Universal Asynchronous Receiver/ Transmitters) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help your applications overcome the factors that slow down your system. collapse


Black Box Explains...How fiber is insulated for use in harsh environments.

Fiber optic cable not only gives you immunity to interference and greater signal security, but it’s also constructed to insulate the fiber’s core from the stress associated with use in... more/see it nowharsh environments.

The core is a very delicate channel that’s used to transport data signals from an optical transmitter to an optical receiver. To help reinforce the core, absorb shock, and provide extra protection against cable bends, fiber cable contains a coating of acrylate plastic.

In an environment free from the stress of external forces such as temperature, bends, and splices, fiber optic cable can transmit light pulses with minimal attenuation. And although there will always be some attenuation from external forces and other conditions, there are two methods of cable construction to help isolate the core: loose-tube and tight-buffer construction.

In a loose-tube construction, the fiber core literally floats within a plastic gel-filled sleeve. Surrounded by this protective layer, the core is insulated from temperature extremes, as well as from damaging external forces such as cutting and crushing.

In a tight-core construction, the plastic extrusion method is used to apply a protective coating directly over the fiber coating. This helps the cable withstand even greater crushing forces. But while the tight-buffer design offers greater protection from core breakage, it’s more susceptible to stress from temperature variations. Conversely, while it’s more flexible than loose-tube cable, the tight-buffer design offers less protection from sharp bends or twists. collapse


Black Box Explains...Optical isolation and ground loops.

Optical isolation protects your equipment from dangerous ground loops. A ground loop is a current across a conductor, created by a difference in potential between two grounded points, as in... more/see it nowequipment in two buildings connected by a run of RS-232 or other data line. When two devices are connected and their potentials are different, voltage flows from high to low by traveling through the data cable. If the voltage potential is large enough, your equipment won’t be able to handle the excess voltage and one of your ports will be damaged.

Ground loops can also exist in industrial environments. They can be created when power is supplied to your equipment from different transformers or when someone simply turns equipment on and off. Ground loops can also occur when there is a nearby lightning strike. During an electrical storm, the ground at one location can be charged differently than the other location, causing a heavy current flow through the serial communication lines that damage components.

You can’t test for ground loops. You don’t know you have one until a vital component fails. Only prevention works. For data communication involving copper cable, optical isolation is key.

With optical isolation, electrical data is converted to an optical beam, then back to an electrical pulse. Because there is no electrical connection between the DTE and DCE sides, an optical isolator— unlike a surge suppressor—will not pass large sustained power surges through to your equipment. Since data only passes through the optical isolator, your equipment is protected against ground loops and other power surges. collapse


Black Box Explains... G.703.

G.703 is the ITU-T recommendation covering the 4-wire physical interface and digital signaling specification for transmission at 2.048 Mbps (E1). G.703 also includes specifications for U.S. 1.544-Mbps T1 but is... more/see it nowstill generally used to refer to the European 2.048-Mbps transmission interface. collapse


Black Box Explains...Power problems.

Sags
The Threat — A sag is a decline in the voltage level. Also known as “brownouts,” sags are the most common power problem.

The Cause — Sags can be caused... more/see it nowlocally by the start-up demands of electrical devices such as motors, compressors, and elevators. Sags may also happen during periods of high electrical use, such as during a heat wave.

The Effect — Sags are often the cause of “unexplained” computer glitches such as system crashes, frozen keyboards, and data loss. Sags can also reduce the efficiency and lifespan of electrical motors.

Blackouts
The Threat — A blackout is a total loss of power.

The Cause — Blackouts are caused by excessive demand on the power grid, an act of nature such as lightning or an earthquake, or a human accident such as a car hitting a power pole or a backhoe digging in the wrong place.

The Effect — Of course a blackout brings everything to a complete stop. You also lose any unsaved data stored in RAM and may even lose the total contents of your hard drive.

Spikes
The Threat — A spike, also called an impulse, is an instantaneous, dramatic increase in voltage.

The Cause — A spike is usually caused by a nearby lightning strike but may also occur when power is restored after a blackout.

The Effect — A spike can damage or completely destroy electrical components and also cause data loss.

Surges
The Threat — A surge is an increase in voltage lasting at least 1/120 of a second.

The Cause — When high-powered equipment such as an air conditioner is powered off, the excess voltage is dissipated though the power line causing a surge.

The Effect — Surges stress delicate electronic components causing them to wear out before their time.

Noise
The Threat — Electrical noise, more technically called electromagnetic interference (EMI) and radio frequency interference (RFI), interrupts the smooth sine wave expected from electrical power.

The Cause — Noise has many causes including nearby lightning, load switching, industrial equipment, and radio transmitters. It may be intermittent or chronic.

The Effect — Noise introduces errors into programs and data files. collapse


Black Box Explains... Manual switch chassis styles.

There are five manual switch chassis styles: three for standalone switches (Styles A, B, and C) and two for rackmount switches (Styles D and E). Below are the specifications for... more/see it noweach style.

Standalone Switches

Chassis Style A
Size — 2.5"H x 6"W x 6.3"D (6.4 x 15.2 x 16 cm
Weight — 1.5 lb. (0.7 kg)
Chassis Style B
Size — 3.5"H x 6"W x 6.3"D (8.9 x 15.2 x 16 cm)
Weight — 1.5 lb. (0.7 kg)
Chassis Style C
Size — 3.5"H x 17"W x 5.9"D (8.9 x 43.2 x 15 cm)
Weight — 8.4 lb. (3.8 kg)

Rackmount Switches

Chassis Style D (Mini Chassis)
Size — 3.5"H x 19"W x 5.9"D (8.9 x 48.3 x 15 cm)
Chassis Style E (Standard Chassis)
Size — 7"H x 19"W x 5.9"D (17.8 x 48.3 x 15 cm) collapse


Black Box Explains...UARTs and PCI buses.

Universal Asynchronous Receiver/Transmitters UARTs are designed to convert sync data from a PC bus to an async format that external I/O devices such as printers or modems use. UARTs insert... more/see it nowor remove start bits, stop bits, and parity bits in the data stream as needed by the attached PC or peripheral. They can provide maximum throughput to your high-performance peripherals without slowing down your CPU.

In the early years of PCs and single-application operating systems, UARTs interfaced directly between the CPU bus and external RS-232 I/O devices. Early UARTs did not contain any type of buffer because PCs only performed one task at a time and both PCs and peripherals were slow.

With the advent of faster PCs, higher-speed modems, and multitasking operating systems, buffering (RAM or memory) was added so that UARTs could handle more data. The first buffered UART was the 16550 UART, which incorporates a 16-byte FIFO (First In First Out) buffer and can support sustained data-transfer rates up to 115.2 kbps.

The 16650 UART features a 32-byte FIFO and can handle sustained baud rates of 460.8 kbps. Burst data rates of up to 921.6 kbps have even been achieved in laboratory tests.

The 16750 UART has a 64-byte FIFO. It also features sustained baud rates of 460.8 kbps but delivers better performance because of its larger buffer.

Used in newer PCI cards, the 16850 UART has a 128-byte FIFO buffer for each port. It features sustained baud rates of 460.8 kbps.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed peripherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

A Universal PCI (uPCI) card has connectors that work with both a newer 3.3-V power supply and motherboard and with older 5.5-V versions. collapse

Results 1-10 of 47 1 2 3 4 5 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services