Loading



Results 131-140 of 2446 << < 11 12 13 14 15 > >> 

The ANSI/ISA Standard and Hazardous Locations

Fires and explosions are a major safety concern in industrial plants. Electrical equipment that must be installed in these locations should be specifically designed and tested to operate under extreme... more/see it nowconditions. The hazardous location classification system was designed to promote the safe use of electrical equipment in those areas “where fire or explosion hazards may exist due to flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers of flyings.”

The NEC and CSA define hazardous locations by three classes:
Class 1: Gas or vapor hazards
Class 2: Dust hazards
Class 3: Fibers and flyings

Two divisions:
Division 1: An environment where ignitable gases, liquids, vapors or dusts can exist Division 2: Locations where ignitables are not likely to exist

Hazardous classes are further defined by groups A, B, C, D, E, F, and G:
A. Acetylene
B. Hydrogen
C. Ethlene, carbon monoxide
D. Hydrocarbons, fuels, solvents
E. Metals
F. Carbonaceous dusts including coal, carbon black, coke
G. Flour, starch, grain, combustible plastic or chemical dust

ANSI/ISA 12.12.01
Our line of Industrial Ethernet Switches (LEH1208A, LEH1208A-2GMMSC, LEH1216A and LEH1216A-2GMMSC) is fully compliant with ANSI/ISA 12.12.01, a construction standard for Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations. ANSI/ISA 12.12.01-2000 is similar to UL1604, but is more stringent (for a full list of changes, see Compliance Today). UL1604 was withdrawn in 2012 and replaced with ISA 12.12.01.

The standard provides the requirements for the design, construction, and marking of electrical equipment or parts of such equipment used in Class I and Class II, Division 2 and Class III, Divisions 1 and 2 hazardous (classified) locations. This type of equipment, in normal operation, is not capable of causing ignition.

The standard establishes uniformity in test methods for determining the suitability of equipment as related to their potential to ignite to a specific flammable gas or vapor-in-air mixture, combustible dust, easily ignitable fibers, or flyings under the following ambient conditions:
a) an ambient temperature of -25°C to 40°C.
b) an oxygen concentration of not greater than 21 percent by volume.
c) a pressure of 80 kPa (0.8 bar) to 110 kPa (1.1 bar).

The standard is available for purchase at www.webstore.ansi.org. To learn more about ANSI/ISA 12.12.01 and hazardous location types, visit https://www.osha.gov/doc/outreachtraining/htmlfiles/hazloc.html. -- collapse

  • Specification Sheet... 
  • CAT6 250-MHz Shielded, Stranded Bulk Cable (SSTP, PIMF), Blue, Specification Sheet
    Specification Sheet for EVNSL0272BL-1000 (v1)
 

Black Box Explains...PC, UPC, and APC fiber connectors.

Fiber optic cables have different types of mechanical connections. The type of connection determines the quality of the fiber optic lightwave transmission. The different types we’ll discuss here are the... more/see it nowflat-surface, Physical Contact (PC), Ultra Physical Contact (UPC), and Angled Physical Contact (APC).

The original fiber connector is a flat-surface connection, or a flat connector. When mated, an air gap naturally forms between the two surfaces from small imperfections in the flat surfaces. The back reflection in flat connectors is about -14 dB or roughly 4%.

As technology progresses, connections improve. The most common connection now is the PC connector. Physical Contact connectors are just that—the end faces and fibers of two cables actually touch each other when mated.

In the PC connector, the two fibers meet, as they do with the flat connector, but the end faces are polished to be slightly curved or spherical. This eliminates the air gap and forces the fibers into contact. The back reflection is about -40 dB. This connector is used in most applications.

An improvement to the PC is the UPC connector. The end faces are given an extended polishing for a better surface finish. The back reflection is reduced even more to about -55 dB. These connectors are often used in digital, CATV, and telephony systems.

The latest technology is the APC connector. The end faces are still curved but are angled at an industry-standard eight degrees. This maintains a tight connection, and it reduces back reflection to about -70 dB. These connectors are preferred for CATV and analog systems.

PC and UPC connectors have reliable, low insertion losses. But their back reflection depends on the surface finish of the fiber. The finer the fiber grain structure, the lower the back reflection. And when PC and UPC connectors are continually mated and remated, back reflection degrades at a rate of about 4 to 6 dB every 100 matings for a PC connector. APC connector back reflection does not degrade with repeated matings. collapse

  • Pdf Drawing... 
  • Multimode, 50-Micron Duplex Fiber Optic Cable, PVC, LC%X96LC PDF Drawing
    PDF Drawing for EFN6020 Series (Version 1)
 
  • Software... 
  • ServSwitch Octet KVM Switch Software
    Software for KV1700A, KV1701A, KV1702A, KV1703A (Octoware 3.3.0.3)
 

Product Data Sheets (pdf)...ServSwitch Wizard Extender Dual-Access Dual-Head Serial Kit with Bidirectional Stereo Audio and Skew Compensation


Product Data Sheets (pdf)...232/422 Monitor Advantage


  • Manual... 
  • Horizontal Organizer
    (Version 1)
 
  • Manual... 
  • CAT5 VGA Video Splitter
    Installation/User (January 2005)
 
Results 131-140 of 2446 << < 11 12 13 14 15 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services