Loading


Content Type (x) > Black Box Explains (x)

Results 91-100 of 209 << < 6 7 8 9 10 > >> 

Black Box Explains...Ethernet hubs vs. Ethernet switches.

Although hubs and switches look very similar and are connected to the network in much the same way, there is a significant difference in the way they function.

What is a... more/see it nowhub?
An Ethernet hub is the basic building block of a twisted-pair (10BASE-T or 100BASE-TX) Ethernet network. Hubs do little more than act as a physical connection. They link PCs and peripherals and enable them to communicate over a network. All data coming into the hub travels to all stations connected to the hub. Because a hub doesn’t use management or addressing, it simply divides the 10- or 100-Mbps bandwidth among users. If two stations are transferring high volumes of data between them, the network performance of all stations on that hub will suffer. Hubs are good choices for small- or home-office networks, particularly if bandwidth concerns are minimal.

What is a switch?
An Ethernet switch, on the other hand, provides a central connection in an Ethernet network in which each connected device has its own dedicated link with full bandwidth. Switches divide LAN data into smaller, easier-to-manage segments and send data only to the PCs it needs to reach. They allot a full 10 or 100 Mbps to each user with addressing and management features. As a result, every port on the switch represents a dedicated 10- or 100-Mbps pathway. Because users connected to a switch do not have to share bandwidth, a switch offers relief from the network congestion a shared hub can cause.

What to consider when selecting an Ethernet hub:
• Stackability. Select a stackable hub connected with a special cable so you can start with one hub and add others as you need more ports. The entire stack functions as one device.
• Manageability. Choose an SNMP-manageable hub if you have a large, managed network.

What to consider when selecting an Ethernet switch:
• Manageability. Ethernet switches intended for large managed networks feature built-in management, usually SNMP.
• OSI Layer operation. Most Ethernet switches operate at “Layer 2,” which is for the physical network addresses (MAC addresses). Layer 3 switches use network addresses, and incorporate routing functions to actively calculate the best way to send a packet to its destination. Very advanced Ethernet switches, often known as routing switches, operate on OSI Layer 4 and route network traffic according to the application.
• Modular construction. A modular switch enables you to populate a chassis with modules of different speeds and media types. Because you can easily change modules, the modular switch is an adaptable solution for large, growing networks.
• Stackability. Some Ethernet switches can be connected to form a stack of two or more switches that functions as a single network device. This enables you to start with fewer ports and add them as your network grows. collapse


Black Box Explains... SC and ST connectors.

The SC Connector features a molded body and a push-pull locking system. It’s perfect for the office, CATV, and telephone applications.

The ST® Connector uses a bayonet locking system. Its... more/see it nowceramic ferrule ensures high performance. collapse


Black Box Explains...Digital Visual Interface (DVI) connectors.

DVI (Digital Video Interface) is the standard digital interface for transmitting uncompressed high-definition, 1080p video between PCs and monitors and other computer equipment. Because DVI accommodates both analog and digital... more/see it nowinterfaces with a single connector, it is also compatible with the VGA interface. DVI differs from HDMI in that HDMI is more commonly found on HDTVs and consumer electronics.

The DVI standard is based on transition-minimized differential signaling (TMDS). There are two DVI formats: Single-Link and Dual-Link. Single-link cables use one TMDS-165 MHz transmitter and dual-link cables use two. The dual-link cables double the power of the transmission. A single-link cable can transmit a resolution ?of 1920 x 1200 vs. 2560 x 1600 for a dual-link cable.

There are several types of connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC.

DVI-D (digital). This digital-only interface provides a high-quality image and fast transfer rates between a digital video source and monitors. It eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.

DVI-I (integrated). This interface supports both digital and analog RGB connections. It can transmit either a digital-to-digital signal or an analog-to-analog signal. It can be used with adapters to enable connectivity to a VGA or DVI-I display or digital connectivity to a DVI-D display. If both connectors are DVI-I, you can use any DVI cable, but DVI-I is recommended.

DVI-A (analog) This interface is used to carry a DVI signal from a computer to an analog VGA device, such as a display. If one connection is DVI and the other is VGA HD15, you need a cable or adapter with both connectors.

DFP (Digital Flat Panel) was an early digital-only connector used on some displays.

EVC (also known as P&D, for Plug & Display), another older connector, handles digital and analog connections.

collapse


Black Box Explains...Choosing cabinets and racks.



Why cabinets? Why racks?


A cabinet is an enclosure with a door (or doors); a rack is an open frame. There are several things you... more/see it nowshould consider when you’re deciding whether you need an enclosed cabinet or a rack.


First, what equipment will you be putting in it? The extra stability of a cabinet might be important if you’re installing large, heavy equipment like servers. But if you need frequent access to all sides of the equipment, an open rack might be more convenient. And if your equipment needs a lot of ventilation, you’ll have to be more careful about the air supply if you enclose it in a cabinet.


Second, in what environment will you be installing it? If the environment is open or dusty, for example, you might need the extra protection of an enclosed cabinet. On the other hand, a rack might be perfectly adequate in a well-maintained data center.


Don’t neglect aesthetics. Will customers or clients see your installation? A cabinet with a door looks much neater than an open rack. When you’re trying to create a professional image, everything counts.


Finally, there’s security. An enclosed cabinet can be locked with a simple lock and key.


On the other hand, there are advantages to open racks, too. It’s easier to get at all sides of the equipment. But you’ll have to take other steps to keep the equipment secure-keeping it in a locked room, for example.


Both cabinets and racks come in all sizes and in many different installation styles. Some are freestanding; some are designed to be mounted on a wall. Others sit on the floor but attach to the wall for more stability.


If you need to set up your installation in a hurry, you can order a preassembled cabinet. You’re ready to load your equipment as soon as the cabinet arrives.


Choosing the right server cabinet.

Consider this quick checklist of features when choosing a server cabinet:

  • High-volume airflow. The requirements for additional airflow increase as more servers are mounted in a cabinet. Additionally, manufacturers are making servers narrower to increase available space. But with more servers in the same amount of space, heat buildup is frequently a problem.
  • Extra depth to accommodate newer, deeper servers.
  • Adjustable rails.
  • Rails with M6 square holes. Although 10-32 tapped and drilled holes are sometimes still required, newer hardware has M6 square holes. Know which type of mounting equipment you’ll need.
  • Front and/or rear accessibility.
NEMA 12 certification.

The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact with the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.


Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible.


Choosing the right rack.

Before you choose a rack, you have to determine what equipment you need to house. This list can include CPUs, monitors, keyboards, modems, servers, switches, hubs, routers, and UPSs. Consider the size and weight of all your equipment as well. The rack must be large and strong enough to hold everything you have now, and you’ll also want to leave extra room for growth.

Most racks are designed to hold equipment that’s 19" (48.3 cm) wide. But height and depth may vary from rack to rack. Common rack heights range from 39" (99.1 cm) to 87" (221 cm).


Another measurement you should know about is the rack unit. One rack unit, abbreviated as U, equals 1.75" (4.4 cm). A rack that is 20U, for example, has 20 rack spaces for equipment, or is 35" high (88.9 cm).


Understanding cabinet and rack measurements.

The main component of a cabinet or rack is a set of vertical rails with mounting holes to which you attach your equipment or shelves. When you consider the width or height of the rack, clarify whether they are inside or outside dimensions.

The first measurement you need to know is the width between the rails. The most common size is 19 inches with hole-to-hole centers measuring 18.3 inches. But there are also 23-inch and 24-inch cabinets and racks. Most rackmount equipment is made to fit 19-inch rails but can be adapted to fit wider rails.


After the width, the most important specification is the number of rack units, abbreviated “U.” It’s a measurement of vertical space available on the rails. Because the width is standard, the amount of vertical space is what determines how much equipment you can actually install. Remember that this measurement of usable vertical space is smaller than the external height of the cabinet or rack.


One rack unit (1U) is 1.75 inches of usable vertical space. So, for example, a rackmount device that’s 2U high will take up 3.5 inches of rack space. A rack that’s 20U high will have 35 inches of usable space.

Because both racks and the equipment that fit in them are usually measured in rack units, it’s easy to figure out how much equipment you can fit in a given cabinet or rack.



Do you need a fan?

Even if your cabinet or rack is in a climate-controlled room, the equipment in it can generate a lot of heat. You may want to consider adding a fan to help keep your equipment from overheating. It’s especially important to have adequate ventilation in an enclosed cabinet.


Getting power to your equipment.

Unless you want to live in a forest of extension cords, you’ll need one or more power strips. Some cabinets come with power strips built in.


If you need to order a power strip, consider which kind will be best for your installation. Rackmount power strips come in versions that mount either vertically or horizontally. Some have outlets that are spaced widely to accommodate transformer blocks-a useful feature if your equipment uses bulky power transformers.


Surge protection is another important issue. Some power strips have built-in surge protection; some don’t. With all the money you have invested in rackmount equipment, you’ll certainly want to make sure it’s protected.


Any mission-critical equipment should also be connected to an uninterruptible power supply (UPS). A UPS keeps your equipment from crashing during a brief blackout or brownout and gives you enough time to shut down everything properly in an extended power outage. You can choose a rackmount UPS for the most critical equipment, or you can plug the whole rack into a standalone UPS.


Managing the cables.

Your equipment may look very tidy when it’s neatly stacked in a cabinet. But you still have an opportunity to make a mess once you start connecting it all. Unless you’re very careful with your cables, you can create a rat’s nest you’ll never be able to sort out.


There are many cabinet and rack accessories that can simplify cable organization. We have Cable Management Guides, Rackmount Cable Raceways, Horizontal Covered Organizers, Vertical Cable Organizers, Horizontal Wire Ring Panels, and Cable Manager Hangers-all designed to help you manage your cables more easily.


Plotting your connections in advance helps you to decide how to organize the cables. Knowing where the connectors are on your equipment tells you where it’s most efficient to run cables horizontally and where it’s better to run them vertically.

The important thing is to have a plan. Most network problems are in the cabling, so if you let your cables get away from you now, you’re sure to pay for it down the road.


Asking for help.

When you’re setting up a cabinet or rack, you have a lot of different factors to consider. Black Box Tech Support is always happy to help you figure out what you need and how to put it together. For cabinets and racks solutions, call our Connectivity Group at 724-746-5500, press 1, 2, 2.

collapse


Black Box Explains...Layer 2, 3, and 4 switches.



...more/see it now
OSI Layer Physical
Component
7-Application Applicaton Software

LAN-Compatible Software
E-Mail, Diagnostics, Word Processing, Database


Network Applications
6-Presentation Data-
Conversion Utilities
Vendor-Specific Network Shells and Gateway™ Workstation Software
5-Session Network Operating System SPX NetBIOS DECnet™ TCP/IP AppleTalk®
4-Transport Novell® NetWare® IPX™ PC LAN LAN Mgr DECnet PC/TCP® VINES™ NFS TOPS® Apple
Share®
3-Network Control
2-Data Link Network E A TR P TR E TR E E E P E P
1-Physical E=Ethernet; TR=Token Ring; A=ARCNET®; P=PhoneNET®

With the rapid development of computer networks over the last decade, high-end switching has become one of the most important functions on a network for moving data efficiently and quickly from one place to another.


Here’s how a switch works: As data passes through the switch, it examines addressing information attached to each data packet. From this information, the switch determines the packet’s destination on the network. It then creates a virtual link to the destination and sends the packet there.


The efficiency and speed of a switch depends on its algorithms, its switching fabric, and its processor. Its complexity is determined by the layer at which the switch operates in the OSI (Open Systems Interconnection) Reference Model (see above).


OSI is a layered network design framework that establishes a standard so that devices from different vendors work together. Network addresses are based on this OSI Model and are hierarchical. The more details that are included, the more specific the address becomes and the easier it is to find.


The Layer at which the switch operates is determined by how much addressing detail the switch reads as data passes through.


Switches can also be considered low end or high end. A low-end switch operates in Layer 2 of the OSI Model and can also operate in a combination of Layers 2 and 3. High-end switches operate in Layer 3, Layer 4, or a combination of the two.


Layer 2 Switches (The Data-Link Layer)

Layer 2 switches operate using physical network addresses. Physical addresses, also known as link-layer, hardware, or MAC-layer addresses, identify individual devices. Most hardware devices are permanently assigned this number during the manufacturing process.


Switches operating at Layer 2 are very fast because they’re just sorting physical addresses, but they usually aren’t very smart—that is, they don’t look at the data packet very closely to learn anything more about where it’s headed.


Layer 3 Switches (The Network Layer)

Layer 3 switches use network or IP addresses that identify locations on the network. They read network addresses more closely than Layer 2 switches—they identify network locations as well as the physical device. A location can be a LAN workstation, a location in a computer’s memory, or even a different packet of data traveling through a network.


Switches operating at Layer 3 are smarter than Layer 2 devices and incorporate routing functions to actively calculate the best way to send a packet to its destination. But although they’re smarter, they may not be as fast if their algorithms, fabric, and processor don’t support high speeds.


Layer 4 Switches (The Transport Layer)

Layer 4 of the OSI Model coordinates communications between systems. Layer 4 switches are capable of identifying which application protocols (HTTP, SNTP, FTP, and so forth) are included with each packet, and they use this information to hand off the packet to the appropriate higher-layer software. Layer 4 switches make packet-forwarding decisions based not only on the MAC address and IP address, but also on the application to which a packet belongs.


Because Layer 4 devices enable you to establish priorities for network traffic based on application, you can assign a high priority to packets belonging to vital in-house applications such as Peoplesoft, with different forwarding rules for low-priority packets such as generic HTTP-based Internet traffic.


Layer 4 switches also provide an effective wire-speed security shield for your network because any company- or industry-specific protocols can be confined to only authorized switched ports or users. This security feature is often reinforced with traffic filtering and forwarding features.

collapse


Black Box Explains...Low-profile PCI serial adapters.

Ever notice that newer computers are getting smaller and slimmer? That means regular PCI boards won’t fit into these computers’ low-profile PCI slots. But because miniaturization is the rage in... more/see it nowall matters of technology, it was only a short matter of time before low-profile PCI serial adapters became available—and Black Box has them.

Low-profile cards meet the PCI Special Interest Group (PCI-SIG) Low-Profile PCI specifications, the form-factor definitions for input/output expansion. Low-Profile PCI has two card lengths defined for 32-bit bus cards: MD1 and MD2. MD1 is the smaller of the two, with cards no larger than 4.721 inches long and 2.536 inches high. MD2 cards are a maximum of 6.6 inches long and 2.536 inches high.

BLACK BOX® Low-Profile Serial PCI cards comply with the MD1 low-profile specification and are compatible with the universal bus. Universal bus is a PCI card that can operate in either a 5-V or 3.3-V signaling level system. collapse


Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700


850-nm Ethernet Distance
1-GbE
OM3: 1000 m

OM4: 1000 m


10-GbE
OM3: 300 m

OM4: 550 m


40-GbE
OM3: 100 m

OM4: 150 m


100-GbE
OM3: 100 m

OM4: 150 m

collapse


Black Box Explains...How to maximize your wireless range.

There are four simple rules that enable you to transmit wireless communications up to their maximum range:
• Try to keep a direct line between the transmitter and receiver.
• Minimize... more/see it nowthe number of walls and ceilings between the transmitter and receiver. Such obstructions reduce the range.
• If there are obstructions, be sure the wireless signal passes through drywall or open doorways and not other materials.
• Keep the transmitter and receiver at least 3 to 6 feet (0.9 to 1.8 m) away from electrical devices or appliances, especially those that generate extreme RF noise. collapse


SHDSL, VDSL, VDSL2, ADSL, and SDSL.

xDSL, a term that encompasses the broad range of digital subscriber line (DSL) services, offers a low-cost, high-speed data transport option for both individuals and businesses, particularly in areas without... more/see it nowaccess to cable Internet.

xDSL provides data transmission over copper lines, using the local loop, the existing outside-plant telephone cable network that runs right to your home or office. DSL technology is relatively cheap and reliable.

SHDSL can be used effectively in enterprise LAN applications. When interconnecting sites on a corporate campus, buildings and network devices often lie beyond the reach of a standard Ethernet segment. Now you can use existing copper network infrastructure to connect remote LANS across longer distances and at higher speeds than previously thought possible.

There are various forms of DSL technologies, all of which face distance issues. The quality of the signals goes down with increasing distance. The most common will be examined here, including SHDSL, ADSL, and SDSL.

SHDSL (also known as G.SHDSL) (Single-Pair, High-Speed Digital Subscriber Line) transmits data at much higher speeds than older versions of DSL. It enables faster transmission and connections to the Internet over regular copper telephone lines than traditional voice modems can provide. Support of symmetrical data rates makes SHDSL a popular choice for businesses for PBXs, private networks, web hosting, and other services.

Ratified as a standard in 2001, SHDSL combines ADSL and SDSL features for communications over two or four (multiplexed) copper wires. SHDSL provides symmetrical upstream and downstream transmission with rates ranging from 192 kbps to 2.3 Mbps. As a departure from older DSL services designed to provide higher downstream speeds, SHDSL specified higher upstream rates, too. Higher transmission rates of 384 kbps to 4.6 Mbps can be achieved using two to four copper pairs. The distance varies according to the loop rate and noise conditions.

For higher-bandwidth symmetric links, newer G.SHDSL devices for 4-wire applications support 10-Mbps rates at distances up to 1.3 miles (2 km). Equipment for 2-wire deployments can transmit up to 5.7 Mbps at the same distance.

SHDSL (G.SHDSL) is the first DSL standard to be developed from the ground up and to be approved by the International Telecommunication Union (ITU) as a standard for symmetrical digital subscriber lines. It incorporates features of other DSL technologies, such as ADSL and SDS, and is specified in the ITU recommendation G.991.2.

Also approved in 2001, VDSL (Very High Bitrate DSL) as a DSL service allows for downstream/upstream rates up to 52 Mbps/16 Mbps. Extenders for local networks boast 100-Mbps/60-Mbps speeds when communicating at distances up to 500 feet (152.4 m) over a single voice-grade twisted pair. As a broadband solution, VDSL enables the simultaneous transmission of voice, data, and video, including HDTV, video on demand, and high-quality videoconferencing. Depending on the application, you can set VDSL to run symmetrically or asymmetrically.

VDSL2 (Very High Bitrate DSL 2), standardized in 2006, provides a higher bandwidth (up to 30 MHz) and higher symmetrical speeds than VDSL, enabling its use for Triple Play services (data, video, voice) at longer distances. While VDSL2 supports upstream/downstream rates similar to VDSL, at longer distances, the speeds don’t fall off as much as those transmitted with ordinary VDSL equipment.

ADSL (Asymmetric DSL) provides transmission speeds ranging from downstream/upstream rates of 9 Mbps/640 kbps over a relatively short distance to 1.544 Mbps/16 kbps as far away as 18,000 feet. The former speeds are more suited to a business, the latter more to the computing needs of a residential customer.

More bandwidth is usually required for downstream transmissions, such as receiving data from a host computer or downloading multimedia files. ADSL’s asymmetrical nature provides more than sufficient bandwidth for these applications.

The lopsided nature of ADSL is what makes it most likely to be used for high-speed Internet access. And the various speed/distance options available within this range are one more point in ADSL’s favor. Like most DSL services standardized by ANSI as T1.413, ADSL enables you to lease and pay for only the bandwidth you need.

SDSL (Symmetric DSL) represents the two-wire version of HDSL—which is actually symmetric DSL, albeit a four-wire version. SDSL is also known within ANSI as HDSL2.

Essentially offering the same capabilities as HDSL, SDSL offers T1 rates (1.544 Mbps) at ranges up to 10,000 feet and is primarily designed for business applications.

collapse


Black Box Explains... Coax cables for ServSwitch products.

What’s the difference between standard and coax cables for ServSwitch™ products? Performance! Coax cables are made with premium-gauge wire, so they can be made in longer lengths. That means you... more/see it nowcan move your workstation up to 100 feet (30.4 m) from your ServSwitch. Plus coax cables have even more shielding to maintain the signal quality and strength you need. If you require high-resolution video or long distances, this is the cable you need! collapse

Results 91-100 of 209 << < 6 7 8 9 10 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services