Content Type (x) > Black Box Explains (x)

Results 91-100 of 208 << < 6 7 8 9 10 > >> 

Black Box Explains...Stream mode vs. burst mode/prompt mode.

Computers and mice must communicate with each other in order to operate properly. Most computers and mice communicate via a method called “stream mode”—as a mouse is being moved, it... more/see it nowsends the coordinates of its new position in a constant stream of information.

However, some computers communicate via a method known as “burst” or “prompt” mode. With this method, the mouse holds its data until the CPU sends a request (or “prompt”) for it. This mode of communication presents a problem for many KVM switches, as they normally pass along mouse coordinates in a stream mode. This results in a CPU receiving data when it isn’t expecting it, and the mouse simply won’t function properly.

All ServSwitch™ products contain support for stream-mode CPUs, and several ServSwitch products support both stream and burst/prompt modes. Call our FREE Tech Support about requirements for your application. collapse

Black Box Explains...Super Dynamic II.

This proprietary processing technology developed by Panasonic® eliminates backlighting problems commonly seen with security camera systems. It gives you clear images regardless of the lighting situation and a dynamic range... more/see it nowthat’s 64 times greater than that offered by conventional video cameras.
Super Dynamic II™ accomplishes this by using a double-speed, charge-coupled device (CCD). It takes two pictures in the time
it takes for a conventional CCD to capture one. The first Super Dynamic II picture is a long exposure (1⁄60th of a second) that captures a scene’s dark areas; the second is a short exposure (from 1⁄1000th to 1⁄4000th of a second) that captures the scene’s bright areas. Super Dynamic II then combines the best quality signals from the two images and outputs them as a Composite analog image.
The technology’s enhanced Digital Signal Processing (DSP) circuitry corrects gradation to give you proper black level references so black areas within a scene appear black—not washed-out shades of gray. It also enables images with high contrast to be seen on the screen.
What’s more, Super Dynamic II technology provides exceptional sensitivity (0.8 lux using an F1.4 lens), enabling the camera to capture vivid details and color even in low-light applications. collapse

Black Box Explains... Using fiber optics for KVM extension.

If you‘re sending KVM signals between buildings for an extended distance, in areas supplied by different power sources, in an electrically noisy environment, or where data security is a big... more/see it nowconcern, you need to use a fiber optic-based KVM extender.

Optical fiber is an ideal transmission medium not only for backbone and horizontal connection, but also for workstation-to-backracked CPU or server links. It works very well in applications where you need to transfer large, bandwidth-consuming data files over long distances, and where you require immunity from electrical interference or data theft.

The choice for extraordinary reach.
Fiber doesn’t have the 100-meter (328-ft.) distance limitation that UTP copper without a booster does. Fiber distances can range from 300 meters (984.2 ft.) to 70 kilometers (24.8 mi.), depending on the cable, wavelength, and network. With fiber-based KVM extenders, the transmitter converts conventional data signals into a modulated light beam, then transports the beam via the fiber to a receiver, which converts the light back into electrical signals.

Many newer fiber-based KVM extenders support both analog and digital transmission. Often, they work by digitizing video output from a local CPU, then sending it across fiber link to a remote unit, which converts it back to the original analog signal. In many cases, one fiber of the fiber pair transmits monitor video serially and the second fiber sends remote mouse and keyboard information back to the local CPU.

The choice for ensuring signal integrity.
Because fiber is made of glass, which is an insulator, no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. This is why fiber-based KVM extenders are beneficial to users in process control, engineering, utility, and factory automation applications. The users need to keep critical information safe and secure off the factory floor but be able to access that data from workstations and control consoles within the harsh environments. Plus, fiber is also less susceptible to temperature fluctuations than copper is, and it can be submerged ?in water.

The choice for greater signal fidelity.
Fiber-based KVM extenders can carry more information with greater fidelity than copper-based ones can. For this reason, they’re ideal for high-data-rate systems in which multimedia workstations are used.

Newer KVM extenders enable you to send both DVI and keyboard and mouse signals over the same fiber cable, transmitting video digitally for zero signal loss. This way, you can get HD-quality resolution even at very long distances from the source. Users in university or government R&D, broadcasting, healthcare—basically anyone who depends on detailed image rendering—can benefit from this technology.

The choice for data security.
Plus, your data is safe when using fiber to connect a workstation with a CPU or server under lock and key. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Many IT managers in military, government, finance, and healthcare choose fiber-based KVM extenders for this very reason. Plus corporations, aware of rising data privacy concerns over customer billing information and the need to protect intellectual property, use this type of extension technology in their offices, too.

Considerations for fiber-based KVM extension.
Before selecting a fiber-based KVM extender, it’s important to know the limitations of your system. You need to know where couplers, links, interconnect equipment, and other devices are going to be placed. If it’s a longer run, you have to determine whether multimode or single-mode fiber cable is needed.

The most important consideration in planning cabling for fiber-based KVM extension is the power budget specification of device connection. The receiver at the remote end has to receive the light signal at a certain level. This value, called the loss budget, tells you the amount of loss in decibels (dB) that can be present in the link between the two devices before the units fail to perform properly.

Specifically, this value takes the fiber type (multimode or single-mode) and wavelength you intend to use—and the amount of expected in-line attenuation—into consideration. This is the decrease of signal strength as it travels through the fiber cable. In the budget loss calculation, you also have to account for splices, patch panels, and connectors, where additional dBs may lost in the entire end-to-end fiber extension. If the measured loss is less than the number calculated by your loss budget, your installation is good.

Testers are available to determine if the fiber cabling supports your intended application. You can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget to determine your link loss margin.

Also, in some instances, particularly when using single-mode fiber to drive the signal farther, the signal may be too strong between connected devices. This causes the light signal to reflect back down the fiber cable, which can corrupt data, result in a faulty transmission, and even damage equipment. To prevent this, use fiber attenuators. They’re used with ?single-mode fiber optic devices and cable to filter the strength of the fiber optic signal from the transmitter’s LED output so it doesn’t overwhelm the receiver. Depending on the type of attenuator attached to the devices at each end of the link, you can diminish the strength of the light signal a variable amount by a certain number of decibels.

Need help calculating your budget loss? Call our FREE Tech Support. If necessary, they can even recommend a fusion splicing fiber kit, a fiber tester, or a signal attenuator for your specific requirements. collapse

Black Box Explains...Dry contacts.

A dry contact, also called a volt-free contact, is a relay contact that does not supply voltage. The relay energizes or de-energizes when a change to its input has occurred.... more/see it nowIn other words, a dry contact simply detects whether or not an input switch is open or closed.

The dry contacts in the ServSensor Contact provide a simple two-wire interface that can be easily adapted to third-party sensors and devices. Because you define what the open or closed condition means, dry contacts are infinitely adaptable.

Use dry contacts to monitor alarms such as fire alarms, burglar alarms, and alarms on power systems such as UPSs. A very common use for dry contacts is to detect whether a cabinet door is open or closed. collapse

Black Box Explains...How to maximize your wireless range.

There are four simple rules that enable you to transmit wireless communications up to their maximum range:
• Try to keep a direct line between the transmitter and receiver.
• Minimize... more/see it nowthe number of walls and ceilings between the transmitter and receiver. Such obstructions reduce the range.
• If there are obstructions, be sure the wireless signal passes through drywall or open doorways and not other materials.
• Keep the transmitter and receiver at least 3 to 6 feet (0.9 to 1.8 m) away from electrical devices or appliances, especially those that generate extreme RF noise. collapse

Black Box Explains...KVMoIP access technology.

KVMoIP access technology extends keyboard, video, and mouse (KVM) signals from any computer or server over TCP/IP via a LAN, WAN, or Internet connection. Through this KVM over IP (KVMoIP)... more/see it nowconnection, remote users can access and control a number of servers simultaneously from wherever they are, inside or outside the organization, and anywhere in the world. This technology works in diverse hardware environments and is ideal for managing multilocation data centers and branch offices.

These capabilities translate into real savings for companies having to deal with the proliferation of servers in many offices, particularly for corporations and government agencies required to deliver 24/7 uptime and real-time access to mission-critical servers 365 days a year.

KVMoIP products combine the advantages of remote access software with the benefits of KVM switching technology. Like most KVM switches, KVMoIP products don’t require any software to be loaded on the host computers. They interface directly with the keyboard, monitor, and mouse connectors of the host computer or KVM switch. Circuitry within the KVMoIP device digitizes the incoming video signal and processes it into digital data that is communicated to a viewer program running on a remote client computer over a LAN/WAN or the public Internet.

By addressing network issues from a remote location, you can simply manage issues from your desk, or even save yourself the hassle of traveling to a site in the middle of the night. Use a browser-based connection, even a cell phone or PDA, to reboot or administer a roomful of servers remotely—a real convenience.

KVMoIP products that feature virtual media technology take that convenience further. They enable a remote user to effortlessly move files from a mass storage device—a USB flash drive or CD-ROM drive, for instance—from your location to the computer on which you’re working. Cost savings are realized through reduced downtime and less travel. Plus, in some cases, there‘s no to need replace existing KVM switches with proprietary ones to get a KVMoIP server-control solution.

The Black Box difference
Black Box® ServSwitch™ KVMoIP solutions go further than many other KVMoIP products on the market. They not only enable you to access remote servers, but they do this at the BIOS level—important when you go need to troubleshoot from off-site and don’t want to a dispatch a technician. Install or recover software applications and install OS patches from your location anywhere in the world. Plus, this BIOS-level control is possible regardless of the server’s brand or model and even works if the operating system is down.

The ServReach™ system is also designed for IT managers seeking global centralized KVM management in a world of mushrooming servers and complexity. This global platform works by consolidating all server access and devices via locally connected KVMoIP devices. All this hardware is then united under a single management appliance or software “umbrella” providing global, yet fully secure, out-of-band control.

The ServReach system works seamlessly with more than 500 variations of analog KVM switches from a multitude of vendors and manufacturers. Because it’s vendor independent, you don’t need to replace your data center’s entire KVM infrastructure. ServReach simply grafts global centralized KVM management onto the existing server room/data center, aligning with third-party KVM switches already in place. This is done with the ServReach KVMGate (KVIP1000A), an IP gateway device designed to connect to each of the legacy KVM devices to provide global centralized KVM management for a fraction of the cost of competitive systems, ensuring a faster and greater ROI.

If you’re planning on opening or acquiring a new data center or a large number of new servers, the ServReach KVManager (KVMGR) is the answer. It can provide any-by-any access via the ServReach KVMCube (KVIP1001A), a compact, rackmountable, digital matrix IP device that gives fully secure, non-blocking access for any of the users to any of the servers simultaneously.

In addition, the servers controlled by legacy KVM switches via KVMGate can still be managed by the ServReach KVManager at the same time as the new servers controlled through a gateway. With all the servers under the same KVManager umbrella, data centers can now easily acquire new servers and devices without having to worry about how to incorporate the new infrastructure with the old. For more information on Black Box KVMoIP solutions, visit blackbox.com/go/ServReach. Find out more by watching a KVMoIP demo and accessing related white papers. collapse

Black Box Explains...UTP cable and color drift.

UTP cable is often used with video or KVM extenders to extend the reach of a video signal. It’s popular for this application because it’s lightweight, easy to handle, and... more/see it nowinexpensive. But when you transmit video over long stretches of twisted-pair cable, you sometimes run into a phenomenon called color drift or color split.

Color drift shows up as that annoying colored shadow you occasionally see around objects on a video screen. It sometimes happens with UTP cable because the pairs of wire in the cable are twisted at slightly different rates to reduce crosstalk between pairs. Because of these differences between wire pairs, video signals for different colors often travel different distances before they reach the remote receiver. When one color signal arrives behind the others because its wire is longer, you get that red, green, or blue shadow around the objects on your video screen.

UTP cable varies widely by manufacturer, so before installing video extenders, it’s difficult to determine whether or not you’re going to have a color drift problem. You’re more likely to experience color drift with higher grades (CAT5e or CAT6) of cable, on longer cable runs, and on high-resolution screens.

If you experience color drift, there are several possible solutions. You can use a shorter length of cable, switch from CAT5e or CAT6 cable to CAT5 cable, use a lower screen resolution, or use a video skew compensator.

A video skew compensator removes color drift by delaying some color signals to compensate for differences in wire pairs. collapse

Black Box Explains... SC and ST connectors.

The SC Connector features a molded body and a push-pull locking system. It’s perfect for the office, CATV, and telephone applications.

The ST® Connector uses a bayonet locking system. Its... more/see it nowceramic ferrule ensures high performance. collapse

Black Box Explains... Guidelines for choosing fiber optic cable.

Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. It’s favored for applications that... more/see it nowneed high bandwidth, long distances, and complete immunity to electrical interference.

It’s ideal for high-data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances.

Fiber offers the following advantages:

Greater bandwidth—Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase.

Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber and many CATV companies are converting to fiber.

Low attenuation and greater distance—Because the fiber optic signal is made of light, very little signal loss occurs during transmission, and data can move at higher speeds and greater distances. Fiber does not have the 100-meter (328-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters (984.2 ft.) to 40 kilometers (24.8 mi.), depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.

Security—Your data is safe with fiber cable. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.

Immunity and reliability—Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The core is made of glass, which is an insulator, so no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.

Design—Fiber is lightweight, thin, and more durable than copper cable. Plus, fiber optic cable has pulling specifications that are up to 10 times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper, advancements in connectors are making termination easier. In addition, fiber is actually easier to test than copper cable.

Migration—The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.

Standards—TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). An addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet (10-GbE) standard.

Costs—The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.

Types of fiber cable and standards.

Multimode, 50- and 62.5-micron cable—Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be used for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable—Single-mode cable has a small 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber. collapse

Black Box Explains…Media converters that also work as switches.

Media converters transparently convert the incoming electrical signal from one cable type and then transmit it over another type—thick coax to Thin, UTP to fiber, and so on. Traditionally, media... more/see it nowconverters were purely Layer 1 devices that only converted electrical signals and physical media and didn’t do anything to the data coming through the link.

Today’s media converters, however, are often more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services and route Ethernet packets based on MAC address. These media converters are often called media converter switches, switching media converters, or Layer 2 media converters. They enable you to have multiple connections rather than just one simple in-and-out connection. And because they’re switches, they increase network efficiency.

Media converters are often used to connect newer 100-Mbps, Gigabit Ethernet, or ATM equipment to existing networks, which are generally 10BASE-T, 100BASE-T, or a mixture of both. They can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference.

Rent an apartment…
Media converters are available in standalone models that convert between two different media types and in chassis-based models that house many media converters in a a single chassis.

Standalone models convert between two media. But, like a small apartment, they can be outgrown.

Consider your current and future applications before selecting a media converter. A good way to anticipate future network requirements is to choose media converters that work as standalone devices but can be rackmounted if needed later.

…or buy a house.
Chassis-based or modular media converter systems are normally rackmountable and have slots to house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and they enable you to mix different media types such as 10BASE-T, 100BASE-TX, 100BASE-FX, ATM, and Gigabit modules. Although enterprise-level chassis-based systems generally have modules that can only be used in a chassis, many midrange systems feature modules that can be used individually or in a chassis. collapse

Results 91-100 of 208 << < 6 7 8 9 10 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Black Box 1-877-877-2269 Black Box Network Services