Loading


Content Type (x) > Black Box Explains (x)

Results 81-90 of 212 << < 6 7 8 9 10 > >> 

Black Box Explains…Wizard.NET

One software solution to rule them all.
Wizard.NET is a professional enterprise management suite that delivers total IP device control, management, and connectivity. Black Box KVM over IP (KVMoIP) devices provide... more/see it nowthe ability to control large numbers of host computers from remote locations. When controlling larger groups of dispersed computers using numerous KVMoIP devices, the major challenge becomes one of management—retaining active control over a complex mix of devices, host computers, and registered users. Wizard.NET was developed as a common interface to help you remotely manage any number of KVMoIP devices together with all of their connected host computers and the access rights of the users.

Wizard.NET is delivered as a software solution only, and operates as a server application running on a system that can be completely separate from any of the KVMoIP devices?—?it merely requires an IP network or Internet connection. Wizard.NET uses an intuitive HTML user interface, which means that registered users can access and control it remotely using a standard Web browser. Like all Wizard KVMoIP products, Wizard.NET employs high specification security techniques to ensure that only authorized users may gain access.

Wizard.NET has two main modules, the manager and the connector. The manager module is accessible only to managers and administrators. It is where the details about all connected devices, hosts, and users are configured and stored. The connector module can be used by registered users to enable quick access to all of the targets for which they have access rights. Targets may be devices, hosts, or device groups as appropriate.

To ensure maximum security, Wizard.NET does not retain any passwords within its database for the devices that it controls. Instead, a valid password is used once only to gain access to each device during the “acquire” stage, when Wizard.NET establishes a Secure Ticket with the device. In all subsequent accesses to each device, the relevant secure ticket is used to gain access. collapse


Black Box Explains...Selecting fiber line drivers.

When choosing a fiber driver, you should make a power budget, calculate the speed and distance of your cable run, and know the interface requirements of all your devices.

Many of... more/see it nowour fiber drivers are for single-mode fiber optic cable. Compared to multimode fiber, single-mode delivers up to 50 times more distance. And single-mode at full-duplex enables up to two times the data throughput of multimode fiber. collapse


Black Box Explains...What to look for in a channel solution.


Channel solution. You hear the term a lot these days to describe complete copper or fiber cabling systems. But what exactly is a channel solution and what are its benefits?... more/see it now

A definition.
A channel solution is a cabling system from the data center to the desktop where every cable, jack, and patch panel is designed to work together and give you consistent end-to-end performance when compared with the EIA/TIA requirements.

Its benefits.
A channel solution is beneficial because you have some assurance that your cabling components will perform as specified. Without that assurance, one part may not be doing its job, so your entire system may not be performing up to standard, which is a problem — especially if you rely on bandwidth-heavy links for video and voice.

What to look for.
There are a lot of channel solutions advertised on the Internet and elsewhere. So what exactly should you be looking for?

For one, make sure it’s a fully tested, guaranteed channel solution. The facts show an inferior cabling system can cause up to 70 percent of network downtime — even though it usually represents only 5 percent of an initial network investment. So don’t risk widespread failure by skimping on a system that doesn’t offer guaranteed channel performance. You need to make sure the products are engineered to meet or go beyond the key measurements for CAT5e or CAT6 performance.

And, sure, they may be designed to work together, but does the supplier absolutely guarantee how well they perform as part of a channel — end to end? Don’t just rely on what the supplier says. They may claim their products meet CAT5e or CAT6 requirements, but the proof is in the performance. Start by asking if the channel solution is independently tested and certified by a reputable third party. There are a lot of suppliers out there who don’t have the trademarked ETL approval logo, for example.

What ETL Verified means.
The ETL logo certifies that a channel solution has been found to be in compliance with recognized standards. To ensure consistent top quality, Black Box participates in independent third-party testing by InterTek Testing Services/ETL Semko, Inc. Once a quarter, an Intertek inspector visits Black Box and randomly selects cable and cabling products for testing.

The GigaTrue® CAT6 and GigaBase® CAT5e Solid Bulk Cable are ETL Verified at the component level to verify that they conform to the applicable industry standards. The GigaTrue® CAT6 and GigaBase® CAT5e Channels, consisting of bulk cable, patch cable, jacks, patch panels, and wiring blocks, are tested and verified according to industry standards in a LAN environment under InterTek’s Cabling System Channel Verification Program. For the latest test results, contact our FREE Tech Support. collapse


Black Box Explains... Basic Printer Switches

Mechanical—A mechanical switch is operated by a knob or by push buttons and uses a set of copper or gold-plated copper contacts to make a connection. The internal resistance created... more/see it nowby this type of connection will affect your signal’s transmission distance and must be taken into account when calculating cable lengths.

Electronic—Although electronic switches are controlled by knobs and pushbuttons like mechanical switches, the switching is accomplished with electronic gates not mechanical contacts. Electronic switches don’t have the internal resistance of a mechanical switch—some even have the ability to drive signals for longer distances. And since they don’t generate electronic spikes like mechanical switches, they’re safe for sensitive components such as HP® laser printers. Some electronic switches can be operated remotely. collapse


Black Box Explains...Single-strand fiber WDM.

Traditional fiber optic media converters perform a useful function but don’t really reduce the amount of cable needed to send data on a fiber segment. They still require two strands... more/see it nowof glass to send transmit and receive signals for fiber media communications. Wouldn’t it be better to combine these two logical communication paths within one strand?

That’s exactly what single-strand fiber conversion does. It compresses the transmit and receive wavelengths into one single-mode fiber strand.

The conversion is done with Wave-Division Multiplexing (WDM) technology. WDM technology increases the information-carrying capacity of optical fiber by transmitting two signals simultaneously at different wavelengths on the same fiber. The way it usually works is that one unit transmits at 1310 nm and receives at 1550 nm. The other unit transmits at 1550 nm and receives at 1310 nm. The two wavelengths operate independently and don’t interfere with each other. This bidirectional traffic flow effectively converts a single fiber into a pair of “virtual fibers,” each driven independently at different wavelengths.

Although most implementations of WDM on single-strand fiber offer two channels, four-channel versions are just being introduced, and versions offering as many as 10 channels with Gigabit capacity are on the horizon.

WDM on single-strand fiber is most often used for point-to-point links on a long-distance network. It’s also used to increase network capacity or relieve network congestion. collapse


The difference between unmanaged, managed, and Web-smart switches

With regard to management options, the three primary classes of switches are unmanaged, managed, and Web smart. Which you choose depends largely on the size of your network and how... more/see it nowmuch control you need over that network.

Unmanaged switches are basic plug-and-play switches with no remote configuration, management, or monitoring options, although many can be locally monitored and configured via LED indicators and DIP switches. These inexpensive switches are typically used in small networks or to add temporary workgroups to larger networks.

Managed switches support Simple Network Management Protocol (SNMP) via embedded agents and have a command line interface (CLI) that can be accessed via serial console, Telnet, and Secure Shell. These switches can often be configured and managed as groups. More recent managed switches may also support a Web interface for management through a Web browser.

These high-end switches enable network managers to remotely access a wide range of capabilities including:

  • SNMP monitoring.
  • Enabling and disabling individual ports or port Auto MDI/MDI-X.
  • Port bandwidth and duplex control.
  • IP address management.
  • MAC address filtering.
  • Spanning Tree.
  • Port mirroring to monitor network traffic.
  • Prioritization of ports for quality of service (QoS).
  • VLAN settings.
  • 802.1X network access control.
  • IGMP snooping.
  • Link aggregation or trunking.

  • Managed switches, with their extensive management capabilities, are at home in large enterprise networks where network administrators need to monitor and control a large number of network devices. Managed switches support redundancy protocols for increased network availability.

    Web-smart switches—sometimes called smart switches or Web-managed switches—have become a popular option for mid-sized networks that require management. They offer access to switch management features such as port monitoring, link aggregation, and VPN through a simple Web interface via an embedded Web browser. What these switches generally do not have is SNMP management capabilities or a CLI. Web-smart switches must usually be managed individually rather than in groups.

    Although the management features found in a Web-smart switch are less extensive than those found in a fully managed switch, these switches are becoming smarter with many now offering many of the features of a fully managed switch. Like managed switches, they also support redundancy protocols for increased network availability.

    collapse


    Black Box Explains... SCSI termination

    Passive termination
    This is the oldest method of termination. A passive terminator sits on the bus to minimize reflections at the end of the cable. Passive terminators simply provide impedance close... more/see it nowto that of the cable. The terminator is “passive” because it doesn’t do any work to regulate power for termination; it relies on the interface card to provide steady power.

    Active termination
    This is a more stable form of terminating SCSI cables. Active terminators control the impedance at the end of the SCSI bus by using a voltage regulator, not just the power supplied by the interface card.

    Forced-perfect termination
    Of all SCSI terminators, this is the most complex. A cable with a forced-perfect terminator can actually change its impedance to compensate for variations along the bus. Forced-perfect terminators force the impedance of the cable to match each device through diode switching and biasing. collapse


    Black Box Explains…A terminal server by any other name.

    A terminal server (sometimes called a serial server or a console server or a device server) is a hardware device that enables you to connect serial devices across a network.

    Terminal... more/see it nowservers acquired their name because they were originally used for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

    The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

    Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

    Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. But if you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


    Using optical break locators and OTDRs.

    An optical time-domain reflectometer, or OTDR, is an instrument used to analyze optical fiber. It sends a series of light pulses into the fiber under test and analyzes the light... more/see it nowthat is scattered and reflected back. These reflections are caused by faults such as breaks, splices, connectors, and adapters along the length of the fiber. The OTDR is able to estimate the overall length, attenuation or loss, and distance to faults. It’s also able to “see” past many of these “events” and display the results. The user is then able to see all the events along the length of the fiber run.

    However, OTDRs do have a weakness?—?a blind spot that prevents them from seeing faults in the beginning of the fiber cable under test. To compensate for this, fiber launch boxes are used. Launch boxes come in predetermined lengths and connector types. These lengths of fiber enable you to compensate for this blind spot and analyze the length of fiber without missing any faults that may be in the first 10–30 meters of the cable.

    An optical break locator, or OBL, is a simplified version of an OTDR. It’s able to detect high-loss events in the fiber such as breaks and determine the distance to the break. OBLs are much simpler to use than an OTDR and require no special training. However, there are limitations. They can only see to the first fault or event and do not display information on the portion of fiber after this event. collapse


    Black Box Explains...NEMA 12 certification.

    The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact... more/see it nowwith the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing non-corrosive liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.

    Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible. collapse

    Results 81-90 of 212 << < 6 7 8 9 10 > >> 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services