Loading


Content Type (x) > Black Box Explains (x)

Results 81-90 of 208 << < 6 7 8 9 10 > >> 

Black Box Explains...Layer 3 switching.

In the last decade, network topologies have typically featured routers along with hubs or switches. The hub or switch acts as a central wiring point for LAN segments while the... more/see it nowrouter takes care of higher-level functions such as protocol translation, traffic between LAN segments, and wide-area access.

Layer 3 switching, which combines Layer 2 switching and Layer 3 IP routing, provides a more cost-effective way of setting up LANs by incorporating switching and routing into one device. While a traditional Layer 2 switch simply sends data along without examining it, a Layer 3 switch incorporates some features of a router in that it examines data packets before sending them on their way. The integration of switching and routing in a Layer 3 switch takes advantage of the speed of a switch and the intelligence of a router in one economical package.

There are two basic types of Layer 3 switching: packet-by-packet Layer 3 (PPL3) and cut-through Layer 3.

PPL3 switches are technically routers in that they examine all packets before forwarding them to their destinations. They achieve top speed by running protocols such as OSPF (Open Shortest Path First) and by using cache routing tables. Because these switches understand and take advantage of network topology, they can blow the doors off traditional routers with speeds of more than 7,000,000 (that’s seven million!) packets per second.

Cut-through Layer 3 switching relies on a shortcut for top speed. Cut-through Layer 3 switches, rather than examining every packet, examine only the first in a series to determine its destination. Once the destination is known, the data flow is switched at Layer 2 to achieve high speeds. collapse


Black Box Explains… Category 7/Class F.


Category 7/Class F (ISO/IEC 11801:2002) specifies a frequency range of 1–600 MHz over 100 meters of fully shielded twisted-pair cabling. It encompasses four individually shielded pairs inside an overall shield,... more/see it nowcalled Shielded/Foiled Twisted Pair (S/FTP) or Foiled/ Foiled Twisted Pair (F/FTP). There is a pending class Fa, based on the use of S/FTP cable to 1000 MHz. It can support 10GBASE-T transmissions.

With both types of cable, each twisted pair is enclosed in foil. In S/FTP cable, all four pairs are encased in an overall metal braid. In F/FTP, the four pairs are encased in foil.

Category 7/Class F cable can be terminated with two interface designs as specified in IEC 6063-7-7 and IEC 61076-3-104. One is an RJ-45 compatible GG-45 connector. The other is the more common TERA connector, which was launched in 1999.

Category 7/Class F is backwards compatible with traditional CAT6 and CAT5 cable, but it has far more stringent specifications for crosstalk and system noise. The fully shielded cable virtually eliminates crosstalk between the pairs. In addition, the cable is noise resistant, which makes the Category 7/Class F systems ideal for high EMI areas, such as industrial and medical imaging facilities.
Category 7/Class F cable can also increase security by preventing the emission of data signals from the cable to nearby areas. collapse


Black Box Explains...16850 UART.

The 16850 Universal Asynchronous Receiver/Transmitter (UART) features a 128-byte First In First Out (FIFO) buffer. When implemented with the appropriate onboard drivers and receivers, it enables your onboard serial ports... more/see it nowto achieve sustained data rates of up to 460.8 kbps.

The 16850 UART includes automatic handshaking (RTS/CTS) and automatic RS-485 line control. It also features external clocking for isochronous applications, a performance enhancement not offered by earlier UARTs. collapse


Black Box Explains...RS-232.

RS-232, also known as RS-232C and TIA/EIA-232-E, is a group of electrical, functional, and mechanical specifications for serial interfaces between computers, terminals, and peripherals. The RS-232 standard was developed by... more/see it nowthe Electrical Industries Association (EIA), and defines requirements for connecting data communications equipment (DCE)—modems, converters, etc.—and data terminal equipment (DTE)—computers, controllers, etc.) devices. RS-232 transmits data at speeds up to 115 Kbps and over distances up to 50 feet (15.2 m).

The standard, which is functionally equivalent to ITU V.24/V.28, specifies the workings of the interface, circuitry, and connector pinning. Both sync and async binary data transmission fall under RS-232. Although RS-232 is sometimes still used to transmit data from PCs to peripheral devices, the most common uses today are for network console ports and for industrial devices.

Even though RS-232 is a “standard,” you can’t necessarily expect seamless communication between two RS-232 devices. Why? Because different devices have different circuitry or pinning, and different wires may be designated to perform different functions.

The typical RS-232 connector is DB25, but some PCs and other data communication devices have DB9 connectors and many newer devices have RJ-45 RS-232 ports. To connect 9-pin PC ports or RJ-45 to devices with 25-pin connectors, you will require a simple adapter cable. collapse


Black Box Explains... How Autocross conversion can work for you.

When using media converters with 10BASE-T or 100BASE-TX cable, you may need to connect your converter to a non-hub device such as a PC or printer.

According to IEEE 802.3 Ethernet... more/see it nowstandards, media converters originally needed a specially pinned crossover cable to connect to PCs. The crossover cable matches the devices’ transmit and receive pins. Now there are media converters that use straight-pinned 10BASE-T patch cable but incorporate an uplink or crossover connection—a switch on the converter that’s set to support the PC-to-converter connection. By setting the uplink switch to “cross,” the converter’s internal mechanism crosses the pins on the RJ-45 connector to simulate a crossover cable.

Autocross conversion eliminates both the need to crosspin cables and set an uplink switch. It adapts to the pin assignment of the twisted-pair cable whether it’s crossed or uncrossed. And because it senses the pin configuration of any cable pinned to Ethernet specifications, it adjusts automatically without user configuration. collapse


Black Box Explains... G.703.

G.703 is the ITU-T recommendation covering the 4-wire physical interface and digital signaling specification for transmission at 2.048 Mbps (E1). G.703 also includes specifications for U.S. 1.544-Mbps T1 but is... more/see it nowstill generally used to refer to the European 2.048-Mbps transmission interface. collapse


The ANSI/ISA Standard and Hazardous Locations

Fires and explosions are a major safety concern in industrial plants. Electrical equipment that must be installed in these locations should be specifically designed and tested to operate under extreme... more/see it nowconditions. The hazardous location classification system was designed to promote the safe use of electrical equipment in those areas “where fire or explosion hazards may exist due to flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers of flyings.”

The NEC and CSA define hazardous locations by three classes:
Class 1: Gas or vapor hazards
Class 2: Dust hazards
Class 3: Fibers and flyings

Two divisions:
Division 1: An environment where ignitable gases, liquids, vapors or dusts can exist Division 2: Locations where ignitables are not likely to exist

Hazardous classes are further defined by groups A, B, C, D, E, F, and G:
A. Acetylene
B. Hydrogen
C. Ethlene, carbon monoxide
D. Hydrocarbons, fuels, solvents
E. Metals
F. Carbonaceous dusts including coal, carbon black, coke
G. Flour, starch, grain, combustible plastic or chemical dust

ANSI/ISA 12.12.01
Our line of Industrial Ethernet Switches (LEH1208A, LEH1208A-2GMMSC, LEH1216A and LEH1216A-2GMMSC) is fully compliant with ANSI/ISA 12.12.01, a construction standard for Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations. ANSI/ISA 12.12.01-2000 is similar to UL1604, but is more stringent (for a full list of changes, see Compliance Today). UL1604 was withdrawn in 2012 and replaced with ISA 12.12.01.

The standard provides the requirements for the design, construction, and marking of electrical equipment or parts of such equipment used in Class I and Class II, Division 2 and Class III, Divisions 1 and 2 hazardous (classified) locations. This type of equipment, in normal operation, is not capable of causing ignition.

The standard establishes uniformity in test methods for determining the suitability of equipment as related to their potential to ignite to a specific flammable gas or vapor-in-air mixture, combustible dust, easily ignitable fibers, or flyings under the following ambient conditions:
a) an ambient temperature of -25°C to 40°C.
b) an oxygen concentration of not greater than 21 percent by volume.
c) a pressure of 80 kPa (0.8 bar) to 110 kPa (1.1 bar).

The standard is available for purchase at www.webstore.ansi.org. To learn more about ANSI/ISA 12.12.01 and hazardous location types, visit https://www.osha.gov/doc/outreachtraining/htmlfiles/hazloc.html. -- collapse


Black Box Explains...Upgrading from VGA to DVI video.

Many new PCs no longer have traditional Cathode Ray Tube (CRT) computer monitors with a VGA interface. The latest high-end computers have Digital Flat Panels (DFPs) with a Digital Visual... more/see it nowInterface (DVI). Although most computers still have traditional monitors, the newer DFPs are coming on strong because flat-panel displays are not only slimmer and more attractive on the desktop, but they’re also capable of providing a much sharper, clearer image than a traditional CRT monitor.

The VGA interface was developed to support traditional CRT monitors. The DVI interface, on the other hand, is designed specifically for digital displays and supports the high resolution, the sharper image detail, and the brighter and truer colors achieved with DFPs.

Most flat-panel displays can be connected to a VGA interface, even though using this interface results in inferior video quality. VGA simply can’t support the image quality offered by a high-end digital monitor. Sadly, because a VGA connection is possible, many computer users connect their DFPs to VGA and never experience the stunning clarity their flat-panel monitors can provide.

It’s important to remember that for your new DFP display to work at its best, it must be connected to a DVI video interface. You should upgrade the video card in your PC when you buy your new video monitor. Your KVM switches should also support DVI if you plan to use them with DFPs. collapse


Black Box Explains...vDSL.

VDSL (Very High Bit-Rate Digital Subscriber Line or Very High-Speed Digital Subscriber Line) is a “last-mile” broadband solution for both businesses and homes, providing economical, high-speed connections to fiber optic... more/see it nowbackbones.

VDSL enables the simultaneous transmission of voice, data, and video on existing voice-grade copper wires. Depending on the intended applications, you can set VDSL to run symmetrically or asymmetrically. VDSL’s high bandwidth allows for applications such as high-definition television, video-on-demand (VOD), high-quality videoconferencing, medical imaging, fast Internet access, and regular voice telephone services—all over a single voice-grade twisted pair. The actual VDSL distances you achieve vary based on line rate, gauge and type of wire, and noise/crosstalk environment. collapse


Black Box Explains...Breakout-style cables.

With breakout- or fanout-style cables, the fibers are packaged individually. A breakout cable is basically several simplex cables bundled together in one jacket. Breakout cables are suitable for riser and... more/see it nowplenum applications, and conduit runs.

This differs from distribution-style cables where several tight-buffered fibers are bundled under the same jacket.

This design of the breakout cable adds strength to the cable, although that makes it larger and more expensive than distribution-style cables.

Because each fiber is individually reinforced, you can divide the cable into individual fiber lines. This enables quick connector termination, and eliminates the need for patch panels.

Breakout cable can also be more economical because it requires much less labor to terminate.

You may want to choose a cable that has more fibers than you actually need in case of breakage during termination or for future expansion. collapse

Results 81-90 of 208 << < 6 7 8 9 10 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services