Content Type (x) > Black Box Explains (x)

Results 81-90 of 205 << < 6 7 8 9 10 > >> 

Black Box Explains...Cabinet accessories.

Once you’ve chosen your cabinet, whether it be a customized Elite or an energy-saving ClimateCab, it’s time to add accessories for even more function.

Cabinets have two sets of rails,... more/see it nowfront and back, where you can mount shelves, trays, cable managers, and power strips.

Shelves are an easy solution for storing things that aren’t rackmountable. The shelves attach to the rails; servers or other equipment sits on the shelves. Make sure the shelf has the weight capacity you need—some can hold hundreds of pounds. For easy access to components in your cabinet, choose a sliding shelf. There are also vented shelves that improve air circulation within the cabinet.

Although most shelves fit 19" rails, there are shelves that go on the less-common 23" rails. There are also brackets that can adapt many devices intended for 19" mounting to 23" rails.

Keyboard trays
Keyboard trays are space-saving solutions that also keep your data center organized. They slide neatly into your cabinet or rack—and out of your way—when not in use. And they usually fit into only 1U of rack space.

KVM trays
Further reduce clutter in your server room by using KVM trays that are 1- or 2U high mounted in your cabinet. Special features of Black Box® KVM trays include rock-solid construction, LEDs on the front panel for easy location in a darkened data center, and integrated KVM switching.

Front-panel controls enable you to use the buttons on a monitor bezel without pulling out the keyboard. Some trays have USB ports for access.

Cable managers
Cabinets usually have built-in troughs for cable routing, knockouts for cable pass-throughs, and tie-off points for cable management. You can also add horizontal or vertical cable managers to the cabinet’s rails to manage and route cables more efficiently. Cable managers control bend radius to protect cables from hidden crushes, kinks, and snags, and reduce maintenance time by keeping your cabinet neat and organized. Plus, properly managed cables help to improve airflow.

If you’ve got no room to spare in your cabinet, think SpaceGAIN. You might not think of a patch panel as an “accessory,” but SpaceGAIN angled-port and angled patch panels are not your average panels. They free up valuable space and eliminate the need for horizontal cable managers. You save time and money by routing cables directly into ports. And SpaceGAIN high-density feed-through patch panels enable you to fit 48 ports into only 1U of rack space, with no punchdowns needed.

To save even more space, use SpaceGAIN 90° Right-Angle CAT5e/CAT6 cables. Their up, down, left, or right angles save up to 4" of space in crowded cabinets.

PDUs and UPSs
Control the distribution of power in your cabinet with a power distribution unit (PDU). A PDU can be basic or “intelligent,” with surge protection, remote management, or power and environmental monitoring. Integrate a PDU directly into an uninterruptible power supply (UPS) for extra reliability.

Fans and blowers
Ventilation in your cabinets is critical for keeping vital equipment cool.

An enclosure blower draws cool air from a raised floor at the bottom of the cabinet and delivers it right across the front of servers or other network components. It fits on standard 19" rails and uses only 2U of mounting space. This high level of ventilation lowers the temperature of cabinet hot spots by up to 15° F. Lowering temperatures protects your electronics against failure caused by overheating, which may enable you to install more equipment.

Fan panels or fan trays direct maximum airflow with very little noise to heat-sensitive rackmounted equipment. Position them in your cabinet wherever you need them the most.

Most network devices take in air through their front panels and expel it out the back. Filler panels in unused rack spaces help keep cool air in the front of the cabinet where it can be used by the equipment.

Most cabinets come with a lock and key, but more advanced options are available to provide a higher level of security. Keyless options include combination locks and biometric locks that read fingerprints. collapse

Black Box Explains...DIN rail usage.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse

Black Box Explains... Crosstalk.

One of the most important cable measurements is Near-End Crosstalk (NEXT). It’s signal interference from one pair that adversely affects another pair on the same end.

Not only can crosstalk... more/see it nowoccur between adjacent wire pairs (“pair-to-pair NEXT“), but all other pairs in a UTP cable can also contribute their own levels of both near-end and far-end crosstalk, multiplying the adverse effects of this interference onto a transmitting or receiving wire pair.

Because such compounded levels of interference can prove crippling in high-speed networks, some cable manufacturers have begun listing Power Sum NEXT (PS-NEXT), FEXT, ELFEXT, and PS-ELFEXT ratings for their CAT5e and CAT6 cables. Here are explanations of the different types of measurements:

NEXT measures an unwanted signal transmitted from one pair to another on the near end.

PS-NEXT (Power Sum crosstalk) is a more rigorous crosstalk measurement that includes the total sum of all interference that can possibly occur between one pair and all the adjacent pairs in the same cable sheath. It measures the unwanted signals from multiple pairs at the near end onto another pair at the near end.

FEXT (Far-End crosstalk) measures an unwanted signal from a pair transmitting on the near end onto a pair at the far end. This measurement takes full-duplex operation into account where signals are generated simultaneously on both ends.

ELFEXT (Equal-Level Far-End Crosstalk) measures the FEXT in relation to the received signal level measured on that same pair. It basically measures interference without the effects of attenuation—the equal level.

PS-ELFEXT (Power Sum Equal-Level Far-End Crosstalk), an increasingly common measurement, measures the total sum of all intereference from pairs on the far end to a pair on the near end without the effects of attenuation. collapse

Mounting flat-screen displays.

Traditionally, computer monitors, TVs, or other video displays have simply been placed on a shelf or desktop. However, today’s flat screens are less stable than older vacuum-tube displays and should... more/see it nowbe secured to prevent tipping. Fortunately, most new displays meet the VESA standard, meaning they have a hole pattern on the back that fits any VESA standard mounting device such as a wall mount, desktop mount, or ceiling mount. This enables you to secure the display to prevent damage from accidental jolts and bumps. Additionally, a mounted display is less likely to be the object of theft. collapse

Black Box Explains... Single-Mode Fiber Optic Cable

Multimode fiber cable has multiple modes of propagation—that is, several wavelengths of light are normally used in the fiber core. In contrast, single-mode fiber cable has only one mode of... more/see it nowpropagation: a single wavelength of light in the fiber core. This means there’s no interference or overlap between the different wavelengths of light to garble your data over long distances like there is with multimode cable.

What does this get you? Distance–up to 50 times more distance than multimode fiber cable. You can also get higher bandwidth. You can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber cable. The actual speed and distance you get will vary with the devices used with the single-mode fiber. collapse

Black Box Explains...USB.

What is USB?
Universal Serial Bus (USB) is a royalty-free bus specification developed in the 1990s by leading manufacturers in the PC and telephony industries to support plug-and-play peripheral connections. USB... more/see it nowhas standardized how peripherals, such as keyboards, disk drivers, cameras, printers, and hubs) are connected to computers.

USB offers increased bandwidth, isochronous and asynchronous data transfer, and lower cost than older input/output ports. Designed to consolidate the cable clutter associated with multiple peripherals and ports, USB supports all types of computer- and telephone-related devices.

Universal Serial Bus (USB) USB detects and configures the new devices instantly.
Before USB, adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect digital printers, recorders, backup drives, and other devices in seconds. USB detects and configures the new devices instantly.

Benefits of USB.
• USB is “universal.” Almost every device today has a USB port of some type.
• Convenient plug-and-play connections. No powering down. No rebooting.
• Power. USB supplies power so you don’t have to worry about adding power. The A socket supplies the power.
• Speed. USB is fast and getting faster. The original USB 1.0 had a data rate of 1.5 Mbps. USB 3.0 has a data rate of 4.8 Gbps.

USB Standards

USB 1.1
USB 1.1, introduced in 1995, is the original USB standard. It has two data rates: 12 Mbps (Full-Speed) for devices such as disk drives that need high-speed throughput and 1.5 Mbps (Low-Speed) for devices such as joysticks that need much lower bandwidth.

USB 2.0
In 2002, USB 2.0, (High-Speed) was introduced. This version is backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1.

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as printers, cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously.

USB 3.0
USB 3.0 (SuperSpeed) (2008) provides vast improvements over USB 2.0. USB 3.0 has speeds up to 5 Gbps, nearly ten times that of USB 2.0. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus.

USB 3.0 is designed to be backward compatible with USB 2.0.

USB 3.0 Connector
USB 3.0 has a flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors. Type A plugs from USB 3.0 and 2.0 are designed to interoperate. USB 3.0 Type B plugs are larger than USB 2.0 plugs. USB 2.0 Type B plugs can be inserted into USB 3.0 receptacles, but the opposite is not possible.

USB 3.0 Cable
The USB 3.0 cable contains nine wires—four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 Power
USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It also conserves power too compared to USB 2.0, which uses power when the cable isn’t being used.

USB 3.1
Released in 2013, is called SuperSpeed USB 10 Gbps. There are three main differentiators to USB 3.1. It doubles the data rate from 5 Gbps to 10 Gbps. It will use the new, under-development Type C connector, which is far smaller and designed for use with everything from laptops to mobile phones. The Type C connector is being touted as a single-cable solution for audio, video, data, and power. It will also have a reversible plug orientation. Lastly, will have bidirectional power delivery of up to 100 watts and power auto-negotiation. It is backward compatible with USB 3.0 and 2.0, but an adapter is needed for the physical connection.

Transmission Rates
USB 3.0: 4.8 Gbps
USB 2.0: 480 Mbps
USB 1.1: 12 Mbps

Cable Length/Node
5 meters (3 meters for 3.0 devices requiring higher speeds).
Devices/bus: 127
Tier/bus: 5

Black Box Explains...Rack units.

A Rack Unit is abbreviated as U. One Rack Unit (1U) is equal to 1.75" (4.44 cm).

Black Box Explains...How MicroRACK Cards fit together.

Slide a function card into the front of the rack. Then slide a connector card in from the back. The rest is simple. Just press the cards together firmly inside... more/see it nowthe rack to seat the connectors.

Changing systems? It’s easy to change to a different connector card. Just contact us, and we’ll find the right connection for you.

Add a hot-swappable power supply (AC for normal operation, VDC for battery-powered sites), and you’re up and running. collapse

Black Box Explains... Manual switch chassis styles.

There are five manual switch chassis styles: three for standalone switches (Styles A, B, and C) and two for rackmount switches (Styles D and E). Below are the specifications for... more/see it noweach style.

Standalone Switches

Chassis Style A
Size — 2.5"H x 6"W x 6.3"D (6.4 x 15.2 x 16 cm
Weight — 1.5 lb. (0.7 kg)
Chassis Style B
Size — 3.5"H x 6"W x 6.3"D (8.9 x 15.2 x 16 cm)
Weight — 1.5 lb. (0.7 kg)
Chassis Style C
Size — 3.5"H x 17"W x 5.9"D (8.9 x 43.2 x 15 cm)
Weight — 8.4 lb. (3.8 kg)

Rackmount Switches

Chassis Style D (Mini Chassis)
Size — 3.5"H x 19"W x 5.9"D (8.9 x 48.3 x 15 cm)
Chassis Style E (Standard Chassis)
Size — 7"H x 19"W x 5.9"D (17.8 x 48.3 x 15 cm) collapse

Black Box Explains...Remote access.

Remote access is the ability to access a network, a personal computer, a server, or other device from a distance for the purpose of controlling it or to access data.... more/see it nowToday, remote access is usually accomplished over the Internet, although a local IP network, telephone lines, cellular service, or leased lines may also be used. With today’s ubiquitous Internet availability, remote access is increasingly popular and often results in significant cost savings by enabling greater network access and reducing travel to remote sites. Remote access is a very general term that covers a wide range of applications from telecommuting to resetting a distant server. Here are just a few of the applications that fall under the remote access umbrella:

Remote network access
A common use for remote access is to provide corporate network access to employees who work at home or are in sales or other traveling positions. This kind of remote access typically uses IPsec VPN tunnels to authenticate and secure connections.

Remote desktop access
Remote desktop access enables users to access a computer remotely from another computer and take control of it as if it were local. This kind of remote control requires that special software—which is included with most operating systems—be installed and enabled. It’s often used by those who travel frequently to access their “home” computer, and by network administrators for remote server access. This remote access method has some inherent security concerns and is usually incompatible with firewalls, so it’s important to be aware of its limitations and use adequate security precautions.

Remote KVM access
A common application in organizations that maintain servers across multiple sites is server administration through an IP-enabled KVM switch. These IP-addressable switches support one or more servers and have an integral Web server, enabling users to access them over the Internet through a Web browser. Because they’re intended for Internet use, these switches offer authentication and encryption for secure connections.

Remote power management
Anyone who’s ever had to get out of bed in the middle of the night to go switch a server off and back on again to reset it can appreciate the convenience of remote power management. Remote power managers have a wide range of capabilities ranging from simple power switching to reboot a device to sophisticated power monitoring, reporting, and management functions.

Remote environmental security monitoring
Remote environmental and security monitoring over the Internet is increasingly popular, largely because of the cost savings of using existing network infrastructure rather than a proprietary security system. This application requires IP-addressable hubs that support a variety of sensors ranging from temperature and humidity to power monitors. Some models even support surveillance cameras. collapse

Results 81-90 of 205 << < 6 7 8 9 10 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Black Box 1-800-316-7107 Black Box Network Services