Loading


Content Type (x) > Black Box Explains (x)

Results 71-80 of 205 << < 6 7 8 9 10 > >> 

Black Box Explains... Coax cables for ServSwitch products.

What’s the difference between standard and coax cables for ServSwitch™ products? Performance! Coax cables are made with premium-gauge wire, so they can be made in longer lengths. That means you... more/see it nowcan move your workstation up to 100 feet (30.4 m) from your ServSwitch. Plus coax cables have even more shielding to maintain the signal quality and strength you need. If you require high-resolution video or long distances, this is the cable you need! collapse


Black Box Explains...Multicasting video over a LAN: Use the right switch.

In KVM extension applications where you want to distribute HD video across a network, you need to understand how it works and what kind of networking equipment to use with... more/see it nowyour extenders.

Think of your network as a river of data with a steady current of data moving smoothly down the channel. All your network users are like tiny tributaries branching off this river, taking only as much water (bandwidth) as they need to process data. When you start to multicast video, data, and audio over the LAN, those streams suddenly become the size of the main river. Each user is then basically flooded with data and it becomes difficult or impossible to do any other tasks. This scenario of sending transmissions to every user on the network is called broadcasting, and it slows down the network to a trickle. There are network protocol methods that alleviate this problem, but it depends on the network switch you use.

Unicast vs. multicasting, and why a typical Layer 2 switch isn’t sufficient.
Unicasting is sending data from one network device to another (point to point); in a typical unicast network, Layer 2 switches easily support these types of communications. But multicasting is transmitting data from one network device to multiple users. When multicasting with Layer 2 switches, all attached devices receive the packets, whether they want them or not. Because a multicast header does NOT have a destination IP address, an average network switch (a Layer 2 switch without supported capabilities) will not know what to do with it. So the switch sends the packet out to every network port on all attached devices. When the client or network interface card (NIC) receives the packet, it analyzes it and discards it if not wanted.

The solution: a Layer 3 switch with IGMPv2 or IGMPv3 and packet forwarding.
Multicasting with Layer 3 switches is much more efficient than with Layer 2 switches because it identifies the multicast packet and sends it only to the intended receivers. A Layer 2 switch sends the multicast packets to every device and, If there are many sources, the network will slow down because of all the traffic. And, without IGMPv2 or IGMPv3 snooping support, the switch can handle only a few devices sending multicasting packets.

Layer 3 switches with IGMP support, however, “know” who wants to receive the multicast packet and who doesn’t. When a receiving device wants to tap into a multicasting stream, it responds to the multicast broadcast with an IGMP report, the equivalent of saying, “I want to connect to this stream.” The report is only sent in the first cycle, initializing the connection between the stream and receiving device. If the device was previously connected to the stream, it sends a grafting request for removing the temporary block on the unicast routing table. The switch can then send the multicast packets to newly connected members of the multicast group. Then, when a device no longer wants to receive the multicast packets, it sends a pruning request to the IGMP-supported switch, which temporarily removes the device from the multicast group and stream.

Therefore, for multicasting, use routers or Layer 3 switches that support the IGMP protocol. Without this support, your network devices will be receiving so many multicasting packets, they will not be able to communicate with other devices using different protocols, such as FTP. Plus, a feature-rich, IGMP-supported Layer 3 switch gives you the bandwidth control needed to send video from multiple sources over a LAN. collapse


Black Box Explains...UARTs and PCI buses.

Universal Asynchronous Receiver/Transmitters UARTs are designed to convert sync data from a PC bus to an async format that external I/O devices such as printers or modems use. UARTs insert... more/see it nowor remove start bits, stop bits, and parity bits in the data stream as needed by the attached PC or peripheral. They can provide maximum throughput to your high-performance peripherals without slowing down your CPU.

In the early years of PCs and single-application operating systems, UARTs interfaced directly between the CPU bus and external RS-232 I/O devices. Early UARTs did not contain any type of buffer because PCs only performed one task at a time and both PCs and peripherals were slow.

With the advent of faster PCs, higher-speed modems, and multitasking operating systems, buffering (RAM or memory) was added so that UARTs could handle more data. The first buffered UART was the 16550 UART, which incorporates a 16-byte FIFO (First In First Out) buffer and can support sustained data-transfer rates up to 115.2 kbps.

The 16650 UART features a 32-byte FIFO and can handle sustained baud rates of 460.8 kbps. Burst data rates of up to 921.6 kbps have even been achieved in laboratory tests.

The 16750 UART has a 64-byte FIFO. It also features sustained baud rates of 460.8 kbps but delivers better performance because of its larger buffer.

Used in newer PCI cards, the 16850 UART has a 128-byte FIFO buffer for each port. It features sustained baud rates of 460.8 kbps.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed peripherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

A Universal PCI (uPCI) card has connectors that work with both a newer 3.3-V power supply and motherboard and with older 5.5-V versions. collapse


Black Box Explains...Electronic vs. manual switches.

What’s the difference between electronic and manual switches? Are the benefits of electronic switches worth the price increase over manual switches?

As you might imagine, the inner workings of manual switches... more/see it noware far simpler than those of electronic switches. When you turn the dial of a manual switch, internal connections are physically moved. This is great for less complex applications, but it can cause voltage spikes that can damage particularly sensitive equipment such as laser printers.

Because electronic switches do their switching with solid-state components, you have more control in advanced applications. For example, our AC-powered, code-operated, and fallback switches offer numerous options for out-of-band management of critical network resources. They give you the remote control your operation may need. You can control your high-end applications and sensitive equipment via computer, modem, or even touch-tone phone—a convenience simply not available with manual switches. collapse


Black Box Explains...Virtual LANs (VLANs).

True to their name, VLANs are literally “virtual“ LANs—mini subLANs that, once configured, can exist and function logically as single, secure network segments, even though they may be part of... more/see it nowa much larger physical LAN.

VLAN technology is ideal for enterprises with far-reaching networks. Instead of having to make expensive, time-consuming service calls, system administrators can configure or reconfigure workstations easily or set up secure network segments using simple point-and-click, drag-and-drop management utilities. VLANs provide a way to define dynamic new LAN pathways and create innovative virtual network segments that can range far beyond the traditional limits of geographically isolated workstation groups radiating from centralized hubs.

For instance, using VLAN switches, you can establish a secure VLAN made up of select devices located throughout your enterprise (managers’ workstations, for example) or any other device that you decide requires full access to the VLAN you’ve created.

According to Cisco, a VLAN is a switched network logically segmented by functions, project teams, or applications regardless of the physical location of users. You can assign each switch port to a different VLAN. Ports configured in the same VLAN share broadcasts; ports that don’t belong to the VLAN don’t share the data.

VLAN switches group users and ports logically across the enterprise—they don’t impose physical constraints like in a shared-hub architecture. In replacing shared hubs, VLAN switches remove the physical barriers imposed by each wiring closet.

To learn more about smart networking with VLANs, call the experts in our Local Area Network Support group at 724-746-5500, press 1, 2, 4. collapse


Black Box Explains... Digital Visual Interface (DVI).

The Digital Visual Interface (DVI) video standard is based on transition-minimized differential signaling (TMDS). In a typical single-line digital signal, voltage is raised to a high level and decreased to... more/see it nowa low level to create transitions that convey data. To minimize the number of tran-sitions needed to transfer data, TMDS uses a pair of signal wires. When one wire goes to a high-voltage state, the other goes to a low-voltage state. This balance increases the data-transfer rate and improves accuracy.

Although there are four types of DVI connectors, only DVI-D and DVI-I are commonly used for monitors. DVI-D is a digital-only connector. DVI-I supports both digital and analog RGB connections. collapse


Planning a digital signage system.

How to plan a digital signage project. Considering the many available digital signage solutions might seem like an overwhelming task. But taking some time to research and understand your options will... more/see it nowbe well worth the investment for your institution. Follow these key steps: 1. You need to understand and articulate the objective at the start. Clearly define the goals and determine how you will measure and analyze against the goals. Determine what information you want to communicate and for what purpose. You may want it to give you one or more of the following: • Sales uplift. • Brand messaging. • Entertainment for waiting customers. • Better internal communications. • Public messaging. • Third-party advertising. It is not only imperative to understand what you want the signage to accomplish but also how it will be evaluated. In short, “How will the success or failure of the system be judged and by whom?” What metrics of judgment will be used: ROI, ROO, or other qualifiers? 2. Clearly define the content: The success of any digital signage system starts, of course, with the content. It must look fresh, exciting, and professional. Who will create it and how will it be presented? Do you have internal resources and expertise, or will you need to outsource content creation? A good source of creative and editorial help can be found in aspiring graphic designers culled from the student ranks, in addition to your school’s art department, yearbook and newspaper staffs, and TV studio (if you have one). 3. Invest the time to understand your options: Once you’ve decided on content, you need to consider the infrastructure that will deliver it and study your display options: LCD vs. plasma? RSS feeds? Live video? Remote management? Playback verification? The options will seem limitless, so taking time to sort through them is imperative. 4. Involve all the appropriate stakeholders: The communications/information department should be involved at the start, considering that your digital signage will likely be used for external community relations. If it‘s a K–12 application, you’ll need to include not only your district’s superintendent, principals, purchasing personnel, and IT staff, but also quite possibly instructional technology and AV staff, as well as maintenance, curriculum, athletic, and cafeteria directors. 5. Figure out how you’re going to pay for it: Digital signage is often viewed by some as a luxury item? —? particularly in the face of shrinking school budgets. But because it can also be used as a tool for emergency communications and notification, administrators can easily make the case that digital signage is a must-have component of any crisis plan — especially in this day and age when school violence incidents capture news headlines. Consider government sources of funding for your digital notification system (federal funds are available from the U.S. Department of Homeland Security for pre-disaster mitigation and preparedness, as well as the U.S. Department of Justice, for instance). Whether it’s earmarked entirely as an IT expenditure or apportioned across multiple departments in your budget, you need a spending roadmap in addition to a developmental one. The hardest part with this may be determining the total cost of ownership over the life of the system, including any nickling-and-diming with ongoing licenses and upgrades. College administrators, however, can easily make the case from a cost-savings perspective. Having to constantly update traditional signage across a campus can be quite costly. Paper signage is expensive to print and replace regularly. With digital signage, no printed material is necessary, so both time and cost savings can be made, and the environmental impact is minimized. 6. Decide how to implement the solution: Based on your deployment size and scope, decide if you can implement it in-house or if you need the help of a professional integrator. A number of “out-of-the box” systems can be set up with relative ease. But the more dynamic and complex the system, the more complicated the implementation and ongoing management? — ?and the more likely you’ll need outside help. collapse


Black Box Explains…Wizard.NET

One software solution to rule them all.
Wizard.NET is a professional enterprise management suite that delivers total IP device control, management, and connectivity. Black Box KVM over IP (KVMoIP) devices provide... more/see it nowthe ability to control large numbers of host computers from remote locations. When controlling larger groups of dispersed computers using numerous KVMoIP devices, the major challenge becomes one of management—retaining active control over a complex mix of devices, host computers, and registered users. Wizard.NET was developed as a common interface to help you remotely manage any number of KVMoIP devices together with all of their connected host computers and the access rights of the users.

Wizard.NET is delivered as a software solution only, and operates as a server application running on a system that can be completely separate from any of the KVMoIP devices?—?it merely requires an IP network or Internet connection. Wizard.NET uses an intuitive HTML user interface, which means that registered users can access and control it remotely using a standard Web browser. Like all Wizard KVMoIP products, Wizard.NET employs high specification security techniques to ensure that only authorized users may gain access.

Wizard.NET has two main modules, the manager and the connector. The manager module is accessible only to managers and administrators. It is where the details about all connected devices, hosts, and users are configured and stored. The connector module can be used by registered users to enable quick access to all of the targets for which they have access rights. Targets may be devices, hosts, or device groups as appropriate.

To ensure maximum security, Wizard.NET does not retain any passwords within its database for the devices that it controls. Instead, a valid password is used once only to gain access to each device during the “acquire” stage, when Wizard.NET establishes a Secure Ticket with the device. In all subsequent accesses to each device, the relevant secure ticket is used to gain access. collapse


Black Box Explains...What to consider when choosing a rack.

Why racks?
There are several things you should consider when choosing a rack.

What kind of equipment will you be putting in it? If you need frequent access to all sides of... more/see it nowthe equipment, an open rack is more convenient than a cabinet. If your equipment needs ventilation, a rack poses no air circulation limitations. And don’t neglect aesthetics. Will customers or clients see your installation? A rack with cable management looks much neater.

Finally, consider security. Because a rack is open, you need to take steps to secure your equipment. Set up your rack in a locked room so prying fingers can’t access your network equipment.

Racks come in various sizes and installation styles. Some are freestanding; some are designed to be wallmounted. Some can be a combination of both styles, sitting on the floor but attaching to the wall for more stability.

Understanding rack measurements.
The main component of a rack is a set of vertical rails with mounting holes to which you attach your equipment or shelves.

The first measurement you need to know is the width between the two rails. It’s commonly given in inches, measured from one mounting hole to the corresponding hole on the opposing rail. The most common rail width is 19"; 23" rails and racks are also available. Most rackmount equipment is designed to fit 19" rails but can be adapted for wider racks.

The next important specification is the number of rack units, which is abbreviated as “U.” This is a measurement of the vertical space available on the rails. Cabinets and racks and rackmount equipment are all measured in rack units. One rack unit (1U) is equal to 1.75" of usable vertical space. So, for example, a device that’s 2U high takes up 3.5" of rack space. A rack that’s 20U high has 35" of usable space.

Because the widths are standard, the amount of vertical space is what determines how much equipment you can actually install. Remember this measurement of usable vertical space is smaller than the external height of the rack.

Getting power to your equipment.
Unless you want to have a tangle of extension cords, you’ll need to get one or more power strips for your rack. Consider which kind would be best for your installation. Rackmount power strips come in versions that mount either vertically or horizontally. Some have outlets that are spaced widely to accommodate transformer blocks—a useful feature if most of your equipment uses bulky power transformers.

Surge protection is another important issue. Some power strips have built-in surge protection; some don’t. With the money you have invested in rackmount equipment, you’ll certainly want to make sure it’s protected.

Any mission-critical equipment should also be connected to an uninterruptible power supply (UPS). A UPS prevents your equipment from crashing during a brief blackout or brownout and allows enough time to shut everything down properly in the event of an extended power outage. Choose a rackmount UPS for the most critical equipment or plug the whole rack into a standalone UPS.

Managing cables.
Your equipment may look very tidy when it’s all mounted. But unless you’re very careful with your cables, you can create a tangle you’ll never be able to unravel.

Plotting your connections in advance helps you to decide the most efficient way to organize the cables. Knowing where the connections are tells you whether it’s better to run cables horizontally or vertically. Most network problems are in the cabling, so if you let your cables get away from you now, you’re sure to pay for it down the road.

There are many cable management accessories that can simplify your racks. collapse


Black Box Explains...KVM tray technology.

KVM tray technology. What we do that others don’t.
From the solid construction of our KVM trays, to unique features like LEDs on the ?front panel and integrated KVM switching, Black Box’s... more/see it nowKVM trays are miles ahead of the competition.

Nothing reduces clutter in a server room like KVM trays that are 1- or 2U high, and ?mount in a cabinet or rack. Here are some of the features that set our KVM trays apart.

TFT LCD support.
This type of monitor uses thin-film transistor (TFT) technology to improve image quality, resulting in higher resolutions, better image contrast, and addressability. All our KVM trays support TFT LCD panel monitors.

Viewing angles.
The screens on our KVM trays are viewable from nearly any angle. Because of the size of our screens, from 15" to 19", viewing angles vary from 140° x 120° all the way up to 160° x 160°, so you don’t always have to be standing directly in front of the monitor to see what’s happening on it.

Universal rail.
Our ServTray Complete family of KVM trays (KVT417A-R2, etc.) has adjustable length instead of a variety of rear bracket sites. This universal rail rear bracket size fits racks with depths of 23.7" (60.2 cm) to 45.3" (115 cm). This simplifies ordering for you!

Dual rail technology.
This KVM tray technology enables the monitor drawer and the keyboard/mouse drawer to move independently of each other. It makes it easy to leave the monitor visible even when a server cabinet is closed and the keyboard/mouse drawer is fully retracted. Black Box has added switching controls to the monitor bezel that can be used to control an attached switch without pulling open the keyboard/mouse drawer for even more space-saving benefits.

Additionally, the dual rails provide a great monitoring environment without disturbing your cooling system.

You asked for it.
Our latest KVM trays, the ServView V KVM Drawer and ServView V KVM Drawer with Widescreen (KVT517A, etc.) were designed based on feedback we have received from some of our customers.

On the front panel of the tray, there is an LED panel, which helps you locate the ?drawer when it’s closed in a darkened data center. The tray only takes up 1U of rack space, and it features the dual rail technology described earlier.

We added front-panel controls for switching, so if you choose a model with an embedded KVM switch, you can use the buttons on the monitor bezel without pulling out the keyboard. Additionally, the top of the keyboard tray features a hideaway connection for USB wireless devices, such as RF- or Bluetooth® supported keyboards and mice. You can wirelessly access your attached targets, even without opening the cabinet door!

Another feature is the front-panel USB port, which provides crash cart access. If your keyboard or GlidePoint® mouse quit on you, simply use this port to attach a passthrough pointing device.

Finally, the widescreen version supports 1920 x 1080 resolutions and DVI connections — two firsts in the data center. collapse

Results 71-80 of 205 << < 6 7 8 9 10 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services