Loading


Content Type (x) > Black Box Explains (x)

Results 51-60 of 212 << < 6 7 8 9 10 > >> 

Black Box Explains...10GBASE-T standard.

In June 2006, the IEEE approved the standard for 10 Gigabit/sec Ethernet, or 10GBASE-T (10-GbE). 10-GbE transmission requires a bandwidth of 500 MHz.

The 10-GbE standards.
The cabling industry is developing... more/see it nowtwo different standards that can be used in 10-GbE applications. One is for use with Category 6 (CAT6) cable, and one is for Augmented Category 6 (CAT6a).

Alien Crosstalk.
Before discussing the standards, a definition of Alien Crosstalk is needed.

Alien Crosstalk (ANEXT) is a critical measurement unique to 10-GbE systems. Crosstalk, measured in 10/100/1000BASE-T systems, is the mixing of signals between wire pairs within a cable. Alien Crosstalk is the measurement of the signal coupling between wire pairs in different, adjacent cables.

The amount of ANEXT depends on a number of factors, including the promixity of adjacent cables and connectors, the cable length, cable twist density, and EMI. Patch panels and connecting hardware are also affected by ANEXT.

With ANEXT, the affected cable is called the disturbed or victim cable. The surrounding cables are the disturbers.

10-GbE using CAT6.
The first set of standards defines cabling performance when using Category 6/Class E cabling for 10-GbE applications. The TIA/EIA version will be the Technical Systems Bulletin 155 (TSB 155). ISO/IEC TR 24750 is a technical report to be used for measuring existing Class E systems.

No matter what the cable length is, CAT6 cable must meet 10-GbE electrical and ANEXT specifications up to 500 MHz. However, the CAT6 standard now specifies measurements only to 250 MHz, and it does not have an ANEXT requirement. There is no guarantee CAT6 can support a 10-GbE system. But the TSB provides guidelines for ways to help mitigate ANEXT. One way to lessen or eliminate ANEXT is to use shielded equipment and cables. Another way is to follow installation guidelines, such as using non-adjacent patch panels, separating equipment cords, unbundling horizontal cabling, etc.

10GbE using CAT6a.
The second set of standards will define Augmented Category 6 (CAT6a) and Augmented Class E (Class Ea) cabling. The newer, augmented cabling systems are designed to support 10-GbE over a 100-meter horizontal channel.

The TIA/EIA version is in draft and will be published as ANSI/TIA/EIA-568B.2-AD10. It recognizes both UTP and STP CAT6a systems. It also extends CAT6 electrical parameters such as NEXT, FEXT, return loss, insertion loss, and more to 500 MHz. It specifies near- and far-end Alien Crosstalk (ANEXT, AFEXT) to 500 MHz. It also goes beyond IEEE 802.3an by establishing the electrical requirements for the permanent link and cabling components. The ISO Class Ea standard will be published in a new edition of the 11801 standard.

These standards specify requirements for each component in the channel, such as cable and connecting hardware, as well as for the permanent link and the channel. collapse


Black Box Explains...Serial ATA technology.

Introduced in the mid 1980s, the Advanced Technology Attachment (ATA) interconnect soon became the industry-standard parallel input/output bus interface for connecting internal storage devices. Ultra ATA, which builds on the... more/see it noworiginal parallel ATA interface, has become the most commonly used type of interconnect.

But in recent years, sharing digital video and audio files over high-speed networks and other data-intensive uses has placed greater demands on hard drives, optical drives, and media-storage peripherals. So, not surprisingly, Ultra ATA now faces competition from a new technology—Serial ATA.

As the name implies, this new interconnect uses a serial bus architecture instead of a parallel one. Serial ATA currently supports speeds up to 150 MBps. Further enhancements could to boost rates as high as 600 MBps.

Compared with Ultra ATA, Serial ATA offers distinct advantages, including a point-to-point topology that enables you to dedicate 150 MBps to each connected device. Each channel can work independently and, unlike the “master-slave” shared bus of Ultra ATA, there’s no drive contention or interface bandwidth sharing.

Compared with Ultra ATA’s parallel bus design, Serial ATA requires a single signal path for sending data bits and a second path for receiving acknowledgement data. Each path travels across a 2-wire differential pair, and the bus contains four signal lines per channel. Fewer interface signals means the interconnect cable requires less board space.

Serial ATA also uses thinner cables (no more than 0.25" wide) that are available in longer lengths (up to 1 meter) as well as an improved connector design to reduce crosstalk. It also offers hot-swappable capabilities.

Although Serial ATA can’t interface directly with earlier Ultra ATA devices, it complies fully with the ATA protocol, so software between the two interconnects is compatible. collapse


Black Box Explains...KVMoIP access technology.

KVMoIP access technology extends keyboard, video, and mouse (KVM) signals from any computer or server over TCP/IP via a LAN, WAN, or Internet connection. Through this KVM over IP (KVMoIP)... more/see it nowconnection, remote users can access and control a number of servers simultaneously from wherever they are, inside or outside the organization, and anywhere in the world. This technology works in diverse hardware environments and is ideal for managing multilocation data centers and branch offices.

These capabilities translate into real savings for companies having to deal with the proliferation of servers in many offices, particularly for corporations and government agencies required to deliver 24/7 uptime and real-time access to mission-critical servers 365 days a year.

KVMoIP products combine the advantages of remote access software with the benefits of KVM switching technology. Like most KVM switches, KVMoIP products don’t require any software to be loaded on the host computers. They interface directly with the keyboard, monitor, and mouse connectors of the host computer or KVM switch. Circuitry within the KVMoIP device digitizes the incoming video signal and processes it into digital data that is communicated to a viewer program running on a remote client computer over a LAN/WAN or the public Internet.

By addressing network issues from a remote location, you can simply manage issues from your desk, or even save yourself the hassle of traveling to a site in the middle of the night. Use a browser-based connection, even a cell phone or PDA, to reboot or administer a roomful of servers remotely—a real convenience.

KVMoIP products that feature virtual media technology take that convenience further. They enable a remote user to effortlessly move files from a mass storage device—a USB flash drive or CD-ROM drive, for instance—from your location to the computer on which you’re working. Cost savings are realized through reduced downtime and less travel. Plus, in some cases, there‘s no to need replace existing KVM switches with proprietary ones to get a KVMoIP server-control solution.

The Black Box difference
Black Box® ServSwitch™ KVMoIP solutions go further than many other KVMoIP products on the market. They not only enable you to access remote servers, but they do this at the BIOS level—important when you go need to troubleshoot from off-site and don’t want to a dispatch a technician. Install or recover software applications and install OS patches from your location anywhere in the world. Plus, this BIOS-level control is possible regardless of the server’s brand or model and even works if the operating system is down.

The ServReach™ system is also designed for IT managers seeking global centralized KVM management in a world of mushrooming servers and complexity. This global platform works by consolidating all server access and devices via locally connected KVMoIP devices. All this hardware is then united under a single management appliance or software “umbrella” providing global, yet fully secure, out-of-band control.

The ServReach system works seamlessly with more than 500 variations of analog KVM switches from a multitude of vendors and manufacturers. Because it’s vendor independent, you don’t need to replace your data center’s entire KVM infrastructure. ServReach simply grafts global centralized KVM management onto the existing server room/data center, aligning with third-party KVM switches already in place. This is done with the ServReach KVMGate (KVIP1000A), an IP gateway device designed to connect to each of the legacy KVM devices to provide global centralized KVM management for a fraction of the cost of competitive systems, ensuring a faster and greater ROI.

If you’re planning on opening or acquiring a new data center or a large number of new servers, the ServReach KVManager (KVMGR) is the answer. It can provide any-by-any access via the ServReach KVMCube (KVIP1001A), a compact, rackmountable, digital matrix IP device that gives fully secure, non-blocking access for any of the users to any of the servers simultaneously.

In addition, the servers controlled by legacy KVM switches via KVMGate can still be managed by the ServReach KVManager at the same time as the new servers controlled through a gateway. With all the servers under the same KVManager umbrella, data centers can now easily acquire new servers and devices without having to worry about how to incorporate the new infrastructure with the old. For more information on Black Box KVMoIP solutions, visit blackbox.com/go/ServReach. Find out more by watching a KVMoIP demo and accessing related white papers. collapse


Black Box Explains...Fiber optic ferrule sleeves.

In a fiber optic adapter, the internal ferrule sleeve holds the fiber in place and aligns the filament of one fiber ferrule with its mate. The ferrule sleeve is the... more/see it nowmost expensive component to manufacture in a fiber optic adapter, accounting for approximately 80% of the total adapter cost.

The ferrule alignment sleeves are also the most critical part of a fiber optic connection process. They provide the bridge between one cable’s ferrule and another cable’s ferrule interface. The precision of the ferrule sleeve and its hole determines how well the fibers align, which affects the light signal transmission.

Fiber optic adapters are generally made with ceramic or metal ferrule sleeves. Some adapters also feature ferrule sleeves that are a combination of these materials.

Ceramic ferrule sleeves are more precisely molded and fit close to the fiber ferrule. This precise molding gives the fiber optic connection a lower optical loss. As a general rule, use ceramic ferrule sleeves for critical network connections, such as backbone runs in highly secure networks or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrule sleeves best suit single-mode cable connections.

Ferrule sleeves made of metal, such as bronze ferrules, offer more durability than ceramic sleeves, but they may not offer the same precision alignment as ceramic ferrule sleeves. Drilling an accurate hole through the metal ferrule sleeve can be difficult, and that can result in less accurate fiber alignment. The use of watch-jeweled centering improves alignment. But overall, metal ferrule sleeves are better suited for multimode fiber applications where absolute alignment isn’t crucial.
collapse


Black Box Explains...CAT5: When more isn’t always better.

In data communications applications, using products that exceed required capacities is usually not a problem. For example, if a 28.8K modem is required, a 33.6K or 56K model will work... more/see it nowjust fine.

But sometimes, more isn’t better. Take KVM extenders designed to expect CAT5 and only CAT5 cable. You’d expect that Category 3 cable wouldn’t be effective with these products, and you would be right.

But you may also assume that if Category 5 cable works fine, Category 5e, Category 6, and other higher-capacity cables would work even better. Unfortunately, this isn’t the case, and here’s why:

KVM extenders from many manufacturers, including ServSwitch CAT5 KVM Extenders, are designed specifically for the Category 5 specs defined by the TIA/EIA standard. Higher-level cables, such as Category 5e, have different characteristics and specifications. Although differences—specifically twist ratios—might seem small, they can have a negative impact on these extenders, which are expecting a true Category 5 transmission.

So with ServSwitch CAT5 KVM Extenders, you can think big with CAT5—just don’t think bigger. collapse


Black Box Explains…Liquid cooling.

The trend toward high-density installations with higher-powered CPUs has made heat a critical issue in data centers. Blade servers present a special challenge—a rack of blade servers can dissipate more... more/see it nowthan 25 kW, generating more heat than an electric oven.

Heat-generated problems
The heat generated in today’s high-density data centers can shorten equipment lifespan, negatively affect equipment performance, and cause downtime. Traditional air-cooling methods such as hot/cold aisle arrangements simply can’t keep up with these heat-generating installations. Data center managers often try to compensate for the inefficiency of air cooling by under-populating racks, but this wastes space—an often scarce commodity in modern data centers.

Why liquid
Because of the inherent inefficiencies of air cooling, many data centers have turned to liquid cooling through water or other refrigerants. Liquids have far greater heat transfer properties than air—water is 3400 times more efficient than air—and can cool far greater equipment densities.

Liquid cooling is usually done at the rack level using the airflow from the servers to move the heat to a cooling unit where it’s removed by liquid, neutralizing heat at the source before it enters the room. Liquid cooling may also be done at the component level, where cooling liquid is delivered directly to individual components. Liquid cooling may also arrive in the form of portable units for cooling hot spots.

Liquid cooling options
Types of liquid cooling commonly used in data centers include:

  • Cabinet-door liquid cooling: With this method, cooling units are special cabinet doors that contain sealed tubes filled with chilled liquid. The liquid is circulated through the door to remove heat vented by equipment fans. Because liquid-cooled doors can replace standard cabinet doors, they’re the favored method for retrofitting liquid cooling into existing data centers.
  • Integrated liquid cooling: This consists of a specialized sealed cabinet that has channels for liquid cooling built into it to act as heat exchangers. Fans move hot air past the heat exchangers before sending the cooled air back to the servers. These cabinets are closed systems that release very little heat into the room.
  • Component-based liquid cooling: Some servers are preconfigured with integrated liquid-based cooling modules. After the servers are installed, liquid is circulated through the cooling modules.
  • Immersion cooling: This rather counterintuitive cooling method immerses servers in a non-conductive liquid, which is circulated to cool the servers.
  • Portable liquid cooling: These are small units that operate by blowing air across water-cooled coils. They can usually accept water from any source—including a nearby faucet. They’re generally plumbed with ordinary garden hoses and require no special skills to use. Portable cooling units are intended for emergency cooling rather than as a permanent solution.


Liquid cooling requires a shift in the way you think about cooling. Installation may require that you acquire a new skill set or hire a professional installer. However, the space savings and cost savings gained through liquid cooling more than make up for the inconvenience of installing a new cooling technology.

Not only does liquid cooling enable data centers to operate at far greater densities than conventional air cooling does, it gets rid of the infrastructure associated with air cooling, enabling you to eliminate hot/cold aisles and raised floors. Liquid cooling can support from 25 to 80% more equipment in the same footprint, resulting in significantly lower infrastructure costs.

Add to this the fact that cooling is often the majority of a data center’s operating cost, and it’s plain to see why an investment in the efficiency of liquid cooling goes right to the bottom line. collapse


Black Box Explains...Speaker sound quality.

A human with keen hearing can hear sounds within a range of about 20 Hz to 20 KHz. But most human speech is centered in the 1000 Hz range, so... more/see it nowmost old-fashioned analog telephone networks provided audio bandwidth only in this range. This range transmits most voice information but can fail to register voice subtleties and inflections.

Because these older analog phone systems had such a narrow bandwidth, headset manufacturers built their products to operate only in those particular frequencies.

When digital networks and fiber optic connections came into use, however, they provided a much wider bandwidth for voice transmission. This led to a corresponding increase in headset sound quality.

Today, quality headsets take advantage of increased network bandwidth and typically can reproduce sounds in the 300 Hz to 3500 Hz range. This makes voices far easier to understand and enables you to pick up all the nuances and inflections of your caller’s voice. collapse


Black Box Explains...How MicroRACK Cards fit together.

Slide a function card into the front of the rack. Then slide a connector card in from the back. The rest is simple. Just press the cards together firmly inside... more/see it nowthe rack to seat the connectors.

Changing systems? It’s easy to change to a different connector card. Just contact us, and we’ll find the right connection for you.

Add a hot-swappable power supply (AC for normal operation, VDC for battery-powered sites), and you’re up and running. collapse


Black Box Explains...Thermocouples

A thermocouple is a device that measures temperature by using the fact that a junction between two different metals produces a varying voltage related to their temperature. Two common types... more/see it nowof thermocouple are Type J and Type K.

Type J thermocouples use iron paired with a nickel-copper alloy. Type J thermocouples may cover a temperature range of up to -40 to +1382° F (-40 to +750°C), and offer high sensitivity.

Type K, the most common type of thermocouple, uses nickel-chromium and nickel-aluminum alloys. Because Type K is an early specification, its characteristics vary widely; individual thermocouples may cover a range of up to -328 to +2462 °F (-200 to +1350 °C). collapse


Black Box Explains...Giga, Giga2, and Giga Plus—what you need to know.

Our Giga, Giga2, and Giga Plus and systems feature jacks, wallplates, surface-mount boxes, and other accessories. Components of each system are designed to work together. And they all work with... more/see it nowour GigaTrue® CAT6 and GigaBase® CAT5e cable. Here are the differences between the systems so you can make the right decision when choosing hardware.

Giga

  • Giga products are our original line of jacks, wallplates, etc.
  • Giga products, such as jacks and wallplates, are designed to work with Giga products.
  • To meet the needs of existing Giga systems, we continue to carry Giga products.

  • Giga2
  • Giga2 products are a newer line. They offer the same quality but are priced economically.
  • Giga2 products, such as jacks and wallplates, are designed to work with Giga2 products.

  • Giga Plus
  • Giga Plus is our newest line and is entirely made in the U.S. So if you need to buy American-made products, choose this line.
  • Giga Plus products are designed to work with Giga2 products.
  • collapse

    Results 51-60 of 212 << < 6 7 8 9 10 > >> 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services