Content Type (x) > Black Box Explains (x)

Results 41-50 of 204 < 1 2 3 4 5 > >> 

Black Box Explains...The 13W3 connector.

The 13W3 connector, also called a 13C3 or DB13W3 connector, is an unusual connector that combines a 10-pin D-shell with three analog video conductors. It supports very-high-resolution analog video signals... more/see it nowand has been used by Sun Microsystems®, SGI, NeXt, Intergraph, and other manufacturers. Although 13W3 connectors from different manufacturers look the same, they may be pinned differently.

Pinning for a standard Sun® 13W3 connector:
A1: Red
A2: Green/Gray
A3: Blue
1: Ground*
2: Vertical Sync*
3: Sense 2
4: Sense Ground
5: Composite Sync 
6: Horizontal Sync*
7: Ground*
8: Sense 1
9: Sense 0
10: Composite Ground

* Considered obsolete; may not be connected. collapse

Black Box Explains...Virtual LANs (VLANs).

True to their name, VLANs are literally “virtual“ LANs—mini subLANs that, once configured, can exist and function logically as single, secure network segments, even though they may be part of... more/see it nowa much larger physical LAN.

VLAN technology is ideal for enterprises with far-reaching networks. Instead of having to make expensive, time-consuming service calls, system administrators can configure or reconfigure workstations easily or set up secure network segments using simple point-and-click, drag-and-drop management utilities. VLANs provide a way to define dynamic new LAN pathways and create innovative virtual network segments that can range far beyond the traditional limits of geographically isolated workstation groups radiating from centralized hubs.

For instance, using VLAN switches, you can establish a secure VLAN made up of select devices located throughout your enterprise (managers’ workstations, for example) or any other device that you decide requires full access to the VLAN you’ve created.

According to Cisco, a VLAN is a switched network logically segmented by functions, project teams, or applications regardless of the physical location of users. You can assign each switch port to a different VLAN. Ports configured in the same VLAN share broadcasts; ports that don’t belong to the VLAN don’t share the data.

VLAN switches group users and ports logically across the enterprise—they don’t impose physical constraints like in a shared-hub architecture. In replacing shared hubs, VLAN switches remove the physical barriers imposed by each wiring closet.

To learn more about smart networking with VLANs, call the experts in our Local Area Network Support group at 724-746-5500, press 1, 2, 4. collapse

Black Box Explains...Connecting peripherals with USB.

Before Universal Serial Bus (USB), adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect... more/see it nowdigital joysticks, scanners, speakers, cameras, or PC telephones to your computer instantly. With USB, anyone can make the connection because everything is automatic!

Because USB connections are hot-swappable, you can attach or remove peripherals without shutting down your computer. Also, USB hubs have additional ports that enable you to daisychain multiple devices together. More than 800 leading PC, peripheral, and software manufacturers support USB. collapse

Black Box Explains...UTP cable and color drift.

UTP cable is often used with video or KVM extenders to extend the reach of a video signal. It’s popular for this application because it’s lightweight, easy to handle, and... more/see it nowinexpensive. But when you transmit video over long stretches of twisted-pair cable, you sometimes run into a phenomenon called color drift or color split.

Color drift shows up as that annoying colored shadow you occasionally see around objects on a video screen. It sometimes happens with UTP cable because the pairs of wire in the cable are twisted at slightly different rates to reduce crosstalk between pairs. Because of these differences between wire pairs, video signals for different colors often travel different distances before they reach the remote receiver. When one color signal arrives behind the others because its wire is longer, you get that red, green, or blue shadow around the objects on your video screen.

UTP cable varies widely by manufacturer, so before installing video extenders, it’s difficult to determine whether or not you’re going to have a color drift problem. You’re more likely to experience color drift with higher grades (CAT5e or CAT6) of cable, on longer cable runs, and on high-resolution screens.

If you experience color drift, there are several possible solutions. You can use a shorter length of cable, switch from CAT5e or CAT6 cable to CAT5 cable, use a lower screen resolution, or use a video skew compensator.

A video skew compensator removes color drift by delaying some color signals to compensate for differences in wire pairs. collapse

Black Box Explains...The fully accessorized rack.

After you choose your rack, consider how you’ll set it up and what accessories you might need.

Your rack may need to be secured. A typical rack has about a... more/see it now15"-deep base, providing some stability, but not enough to prevent the rack from tipping if heavy objects are mounted on it. To solve this problem, most rack bases can be bolted to the floor.

You also need to decide how to accommodate standalone equipment, which is not actually rackmounted or bolted to the rack. You can place small devices on a cantilevered shelf such as the RM001, however, you should place heavier items such as monitors on a center-weight shelf such as the RM377.

Small extras, such as Patch Panel Hinge Kits, can make your job easier. These hinges enable you to access the back of a patch panel simply by swinging it out from the rack. They’re particularly useful for racks in hard-to-reach areas.

If you need to mount both 19" and 23" equipment in the same rack, use a 23" rack with 23"-to-19" Rackmount Adapters to fit the 19" devices.

For a neater appearance, you can cover unused spaces in a rack with Filler Panels.

Cable management is also an important consideration. Our Horizontal and Vertical Cable Managers help you to route cables along the sides of racks, between racks, and to the rackmounted equipment. collapse

Black Box Explains...Breakout-style cables.

With breakout- or fanout-style cables, the fibers are packaged individually. A breakout cable is basically several simplex cables bundled together in one jacket. Breakout cables are suitable for riser and... more/see it nowplenum applications, and conduit runs.

This differs from distribution-style cables where several tight-buffered fibers are bundled under the same jacket.

This design of the breakout cable adds strength to the cable, although that makes it larger and more expensive than distribution-style cables.

Because each fiber is individually reinforced, you can divide the cable into individual fiber lines. This enables quick connector termination, and eliminates the need for patch panels.

Breakout cable can also be more economical because it requires much less labor to terminate.

You may want to choose a cable that has more fibers than you actually need in case of breakage during termination or for future expansion. collapse

Black Box Explains... ServSwitch Multi and audio cable.

Get more out of your ServSwitch Multi. Add audio cable, a set of speakers, and a microphone to each CPU. Audio cable turns your ServSwitch Multi into the ideal system... more/see it nowfor education, training, retail, medical, and multimedia office environments.

Audio cable isn’t just for the ServSwitch Multi either. You can also use it with servers that give off audible alarms.

So even if you don’t have audio equipment now—plan ahead. When you’re ready to add audio equipment, just plug in our audio cable. collapse

The ANSI/ISA Standard and Hazardous Locations

Fires and explosions are a major safety concern in industrial plants. Electrical equipment that must be installed in these locations should be specifically designed and tested to operate under extreme... more/see it nowconditions. The hazardous location classification system was designed to promote the safe use of electrical equipment in those areas “where fire or explosion hazards may exist due to flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers of flyings.”

The NEC and CSA define hazardous locations by three classes:
Class 1: Gas or vapor hazards
Class 2: Dust hazards
Class 3: Fibers and flyings

Two divisions:
Division 1: An environment where ignitable gases, liquids, vapors or dusts can exist Division 2: Locations where ignitables are not likely to exist

Hazardous classes are further defined by groups A, B, C, D, E, F, and G:
A. Acetylene
B. Hydrogen
C. Ethlene, carbon monoxide
D. Hydrocarbons, fuels, solvents
E. Metals
F. Carbonaceous dusts including coal, carbon black, coke
G. Flour, starch, grain, combustible plastic or chemical dust

ANSI/ISA 12.12.01
Our line of Industrial Ethernet Switches (LEH1208A, LEH1208A-2GMMSC, LEH1216A and LEH1216A-2GMMSC) is fully compliant with ANSI/ISA 12.12.01, a construction standard for Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations. ANSI/ISA 12.12.01-2000 is similar to UL1604, but is more stringent (for a full list of changes, see Compliance Today). UL1604 was withdrawn in 2012 and replaced with ISA 12.12.01.

The standard provides the requirements for the design, construction, and marking of electrical equipment or parts of such equipment used in Class I and Class II, Division 2 and Class III, Divisions 1 and 2 hazardous (classified) locations. This type of equipment, in normal operation, is not capable of causing ignition.

The standard establishes uniformity in test methods for determining the suitability of equipment as related to their potential to ignite to a specific flammable gas or vapor-in-air mixture, combustible dust, easily ignitable fibers, or flyings under the following ambient conditions:
a) an ambient temperature of -25°C to 40°C.
b) an oxygen concentration of not greater than 21 percent by volume.
c) a pressure of 80 kPa (0.8 bar) to 110 kPa (1.1 bar).

The standard is available for purchase at www.webstore.ansi.org. To learn more about ANSI/ISA 12.12.01 and hazardous location types, visit https://www.osha.gov/doc/outreachtraining/htmlfiles/hazloc.html. -- collapse

Black Box Explains...Gigabit Ethernet.

As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

Affordability and adaptability
You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

Gigabit over CAT5—1000BASE-TX
The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse

Black Box Explains...NEMA 12 certification.

The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact... more/see it nowwith the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing non-corrosive liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.

Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible. collapse

Results 41-50 of 204 < 1 2 3 4 5 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Black Box 1-800-316-7107 Black Box Network Services