Loading


Content Type (x) > Black Box Explains (x)

Results 21-30 of 205 < 1 2 3 4 5 > >> 

Black Box Explains...Insertion loss.

Insertion loss is a power loss that results from inserting a component into a previously continuous path or creating a splice in it. It is measured by the amount of... more/see it nowpower received before and after the insertion.

In copper cable, insertion loss measures electrical power lost from the beginning of the run to the end.

In fiber cable, insertion loss (also called optical loss) measures the amount of light lost from beginning to end. Light can be lost many ways: absorption, diffusion, scattering, dispersion, and more. It can also be from poor connections and splices in which the fibers don’t align properly.

Light loss is measured in decibels (dBs), which indicate relative power. A loss of 10 dB means a tenfold reduction in power.

Light strength can be measured with optical power meters, optical loss test sets, and other test sets that send a known light source through the fiber and measure its strength on the other end. collapse


Black Box Explains...PC, UPC, and APC fiber connectors.

Fiber optic cables have different types of mechanical connections. The type of connection determines the quality of the fiber optic lightwave transmission. The different types we’ll discuss here are the... more/see it nowflat-surface, Physical Contact (PC), Ultra Physical Contact (UPC), and Angled Physical Contact (APC).

The original fiber connector is a flat-surface connection, or a flat connector. When mated, an air gap naturally forms between the two surfaces from small imperfections in the flat surfaces. The back reflection in flat connectors is about -14 dB or roughly 4%.

As technology progresses, connections improve. The most common connection now is the PC connector. Physical Contact connectors are just that—the end faces and fibers of two cables actually touch each other when mated.

In the PC connector, the two fibers meet, as they do with the flat connector, but the end faces are polished to be slightly curved or spherical. This eliminates the air gap and forces the fibers into contact. The back reflection is about -40 dB. This connector is used in most applications.

An improvement to the PC is the UPC connector. The end faces are given an extended polishing for a better surface finish. The back reflection is reduced even more to about -55 dB. These connectors are often used in digital, CATV, and telephony systems.

The latest technology is the APC connector. The end faces are still curved but are angled at an industry-standard eight degrees. This maintains a tight connection, and it reduces back reflection to about -70 dB. These connectors are preferred for CATV and analog systems.

PC and UPC connectors have reliable, low insertion losses. But their back reflection depends on the surface finish of the fiber. The finer the fiber grain structure, the lower the back reflection. And when PC and UPC connectors are continually mated and remated, back reflection degrades at a rate of about 4 to 6 dB every 100 matings for a PC connector. APC connector back reflection does not degrade with repeated matings. collapse


Black Box Explains... Basic Printer Switches

Mechanical—A mechanical switch is operated by a knob or by push buttons and uses a set of copper or gold-plated copper contacts to make a connection. The internal resistance created... more/see it nowby this type of connection will affect your signal’s transmission distance and must be taken into account when calculating cable lengths.

Electronic—Although electronic switches are controlled by knobs and pushbuttons like mechanical switches, the switching is accomplished with electronic gates not mechanical contacts. Electronic switches don’t have the internal resistance of a mechanical switch—some even have the ability to drive signals for longer distances. And since they don’t generate electronic spikes like mechanical switches, they’re safe for sensitive components such as HP® laser printers. Some electronic switches can be operated remotely. collapse


Black Box Explains...Virtual LANs (VLANs).

True to their name, VLANs are literally “virtual“ LANs—mini subLANs that, once configured, can exist and function logically as single, secure network segments, even though they may be part of... more/see it nowa much larger physical LAN.

VLAN technology is ideal for enterprises with far-reaching networks. Instead of having to make expensive, time-consuming service calls, system administrators can configure or reconfigure workstations easily or set up secure network segments using simple point-and-click, drag-and-drop management utilities. VLANs provide a way to define dynamic new LAN pathways and create innovative virtual network segments that can range far beyond the traditional limits of geographically isolated workstation groups radiating from centralized hubs.

For instance, using VLAN switches, you can establish a secure VLAN made up of select devices located throughout your enterprise (managers’ workstations, for example) or any other device that you decide requires full access to the VLAN you’ve created.

According to Cisco, a VLAN is a switched network logically segmented by functions, project teams, or applications regardless of the physical location of users. You can assign each switch port to a different VLAN. Ports configured in the same VLAN share broadcasts; ports that don’t belong to the VLAN don’t share the data.

VLAN switches group users and ports logically across the enterprise—they don’t impose physical constraints like in a shared-hub architecture. In replacing shared hubs, VLAN switches remove the physical barriers imposed by each wiring closet.

To learn more about smart networking with VLANs, call the experts in our Local Area Network Support group at 724-746-5500, press 1, 2, 4. collapse


Black Box Explains...The MPO connector.

MPO stands for multifiber push-on connector. It is a connector for multifiber ribbon cable that generally contains 6, 8, 12, or 24 fibers. It is defined by IEC-61754-7 and TIA-604-5-D,... more/see it nowalso known as FOCIS 5. The MPO connector, combined with lightweight ribbon cable, represents a huge technological advance over traditional multifiber cables. It’s lighter, more compact, easier to install, and less expensive.

A single MPO connector replaces up to 12, 24, or 36 standard connectors. This very high density means lower space requirements and reduced costs for your installation. Traditional, tight-buffered multifiber cable needs to have each fiber individually terminated by a skilled technician. But MPO fiber optic cable, which carries multiple fibers, comes preterminated. Just plug it in and you’re ready to go.

MPO connectors feature an intuitive push-pull latching sleeve mechanism with an audible click upon connection and are easy to use. The MPO connector is similar to the MT-RJ connector. The MPO’s ferrule surface of 2.45 x 6.40 mm is slightly bigger than the MT-RJ’s, and the latching mechanism works with a sliding sleeve latch rather than a push-in latch.

The MPO connector can be either male or female. You can tell the male connector by the two alignment pins protruding from the end of the ferrule. The MPO ferrule is generally flat for multimode applications and angled for single-mode applications.

MPO connectors are also commonly called MTP® connectors, which is a registered trademark of US Conec. The MTP connector is an MPO connector engineered with particular enhancements to improve optical and mechanical performance. The two connectors are compatible. collapse


Black Box Explains...50-µm vs. 62.5-µm fiber optic cable.

As today’s networks expand, the demand for more bandwidth and greater distances increases. Gigabit Ethernet and the emerging 10 Gigabit Ethernet are becoming the applications of choice for current and... more/see it nowfuture networking needs. Thus, there is a renewed interest in 50-micron fiber optic cable.

First used in 1976, 50-micron cable has not experienced the widespread use in North America that 62.5-micron cable has.

To support campus backbones and horizontal runs over 10-Mbps Ethernet, 62.5-micron fiber, introduced in 1986, was and still is the pre-dominant fiber optic cable because it offers high bandwidth and long distance.

One reason 50-micron cable did not gain widespread use was because of the light source. Both 62.5- and 50-micron fiber cable can use either LED or laser light sources. But in the 1980s and 1990s, LED light sources were common. Because 50-micron cable has a smaller aperture, the lower power of the LED light source caused a reduction in the power budget compared to 62.5-micron cable—thus, the migration to 62.5-micron cable. At that time, laser light sources were not highly developed and were rarely used with 50-micron cable — and, when they were, it was mostly in research and technological applications.

The cables share many characteristics. Although 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber), both 50- and 62.5-micron cable use the same cladding diameter of 125 microns. Because they have the same outer diameter, they’re equally strong and are handled in the same way. In addition, both types of cable are included in the TIA/EIA 568-B.3 standards for structured cabling and connectivity.
As with 62.5-micron cable, you can use 50-micron fiber in all types of applications: Ethernet, FDDI, 155-Mbps ATM, Token Ring, Fast Ethernet, and Gigabit Ethernet. It is recommended for all premise applications: backbone, horizontal, and intrabuilding connections. And it should be considered especially for any new construction and installations. IT managers looking at the possibility of 10 Gigabit Ethernet and future scalability will get what they need with 50-micron cable. collapse


Black Box Explains...Designing your wireless network.



Setting up wireless devices that belong to the 802.11 family is relatively simple, but you do have to pay attention to a few simple factors.


Ad-hoc or infrastructure... more/see it nowmode?

The 802.11 wireless standards support two basic configurations: ad-hoc mode and infrastructure mode.


In ad-hoc mode, wireless user devices such as laptop computers and PDAs communicate directly with each other in a peer-to-peer manner without the benefit of access points.


Ad-hoc mode is generally used to form very small spontaneous networks. For instance, with ad-hoc mode, laptop users in a meeting can quickly establish a small network to share files.


Infrastructure mode uses wireless access points to enable wireless devices to communicate with each other and with your wired network. Most networks use infrastructure mode.


The basic components of infrastructure mode networks include:

  • The radios embedded or installed within the wireless devices themselves. Many notebook computers and other Wi-Fi-compliant mobile devices, such as PDAs, come with the transmitters built in. But for others, you need to install a card-type device to enable wireless communications. Desktop PCs may also need an ISA or a PCI bus adapter to enable the cards to work.
  • The access point, which acts as a base station that relays signals between the 802.11 devices.
One or many access points?

Access points are standalone hardware devices that provide a central point of communication for your wireless users. How many you need in your application depends on the number of users and the amount of bandwidth required by each user. Bandwidth is shared, so if your network has many users who routinely send data-heavy multimedia files, additional access points may be required to accommodate the demand.


A small-office network with fewer than 15 users may need just 1 access point. Larger networks require multiple points. If the hardware supports it, you can overlap coverage areas to allow users to roam between cells without any break in network coverage. A user’s wireless device picks up a signal beacon from the strongest access point to maintain seamless coverage.


How many access points to use also depends on your operating environment and the required range. Radio propagation can be affected by walls and electrical interference that can cause signal reflection and fading. If you’re linking mobile users indoors-where walls and other obstructions impede the radiated signal-the typical maximum range is 150 feet. Outdoors, you can get greater WLAN range-up to 2000 feet (depending on your antenna type) where there’s a clear line of sight!


For optimal speed and range, install your wireless access point several feet above the floor or ground and away from metal equipment or large appliances that may emit interference.


Battle of the bands.

In addition to sharing bandwidth, users also share a band. Most IEEE 802.11 or 802.11b devices function in the 2.4-2.4835-GHz band. But these frequencies are often congested, so you may want to use devices that take advantage of the IEEE 802.11a 5.725-5.825-GHz band.


No matter what frequency you use, you’ll want to isolate your users from outsiders using the same frequency. To do this, assign your users a network identifier, such as an Extended Service Set Identifier (ESSID), as well as distinct channels.


Web and wired network links.

The access point links your wireless network to your wired network, enabling your wireless users to access shared data resources and devices across your LAN enterprise. Some access points even feature capabilities for routing traffic in one or both directions between a wired and wireless network.


For Internet access, connect a broadband router with an access point to an Internet connection over a broadband service such as DSL, cable modem, or satellite.


For connecting network printers, you can dedicate a computer to act as a print server or add a wireless print server device; this enables those on your wireless network to share printers.


When to use external antennas.

If you plan to install access points, you can boost your signal considerably by adding external antennas. Various mounting configurations and high- and low-gain options are available.


You can also use add-on antennas to connect nodes where the topology doesn’t allow for a clear signal between access points. Or use them to link multiple LANs located far apart.


Additional external antennas are also useful to help overcome the effects of multipath propagation in which a signal takes different paths and confuses the receiver. It’s also helpful to deploy antennas that propagate the signal in a way that fits the environment. For instance, for a long, narrow corridor, use an antenna that focuses the RF pattern in one direction instead of one that radiates the signal in all directions.


Plan ahead with a site survey.

A site survey done ahead of time to plot where the signal is the strongest can help you identify problem areas and avoid dead spots where coverage isn’t up to par or is unreliable. For this, building blueprints are helpful in revealing potential obstructions that you might not see in your physical site walkthrough.


To field test for a clear signal path, attach an antenna to an access point or laptop acting as the transmitter at one end. Attach another antenna to a wireless device acting as a receiver at the other end. Then check for interference using RF test equipment (such as a wireless spectrum analyzer) and determine whether vertical or horizontal polarization will work best.


Need help doing this? Call us. We even offer a Site Survey Kit that has a variety of antennas included. Great for installers, the kit enables you to test a variety of antennas in the field before placing a larger antenna order.

collapse


Black Box Explains...Cable management.

Corporate networks are complex systems of PCs, servers, printers, and the devices that connect them. Getting everything to work in harmony requires bundles of cables, and managing all those cables... more/see it nowfrom inside a telecommunications closet can be a daunting task. To connect cable bundles to rackmounted equipment (like patch panels, hubs, switches, or routers), you need to direct the bundles overhead, vertically, and horizontally.

A popular choice for overhead cable routing is a ladder rack. Ladder racks come in many varieties. They can run along a wall supported by brackets or they can be installed overhead and supported by a threaded rod. Ladder racks can support large cable bundles neatly and safely. Because bundles lie flat on a ladder rack, cables aren’t subjected to harsh bends. You can run ladder racks directly to the top of most standard telecommunications racks that conform to TIA/EIA standards.

Use vertical cable managers to route cable bundles along the sides of a rack. These “cable troughs” as they’re sometimes called can be single sided—or double sided to route cable bundles to the rear of equipment and to the ports on the front as well. Vertical cable managers usually come with some type of protection for the cable, such as grommeted holes to protect the cable jacket or a cover that may clip on or act as a door.

Horizontal cable managers are usually a series of rings that directs cables in an orderly fashion toward the ports of hubs, switches, and patch panels. collapse


Black Box Explains...On-screen menus.

When the ServSwitch™ brand of KVM switches was first introduced, there were only two ways to switch: from front-panel push buttons or by sending command sequences from the keyboard. While... more/see it nowthis was more convenient than having a separate keyboard, monitor, and mouse for each CPU, the operator still had to remember key combinations and which server was connected to which port—leading to many cryptic, scribbled notes attached to the switch and to the workstation.

But with the advent of on-screen menus, an operator can use easy-to-read, pop-up menus to identify and select CPUs. It’s even possible to give each CPU a name that makes sense to you—names like “MIS Server,” “Accounting Server,” and so on.
collapse


Black Box Explains... Printer Sharing with Windows

Unlike the earlier DOS operating systems, Windows® doesn’t check to see if the printer is busy at the very beginning of the printing process. Windows will send out data to... more/see it nowstart a job even if the printer is signaling busy or unavailable. If your print sharer doesn’t have a buffer, critical printer-initialization information can be lost before your job is started. Once the initialization information is lost, the printer cannot interpret the job correctly.

A buffered print-sharing device is the most practical solution. When Windows starts printing to a buffered port, it “thinks“ it’s talking directly to the printer, and the critical initialization information is stored by the buffer. The buffer can send out a busy signal to Windows, so it delays sending more information until the buffer is accessible again. collapse

Results 21-30 of 205 < 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services