Loading


Content Type (x) > Black Box Explains (x)

Results 21-30 of 207 < 1 2 3 4 5 > >> 

Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse


Black Box Explains...Choosing cabinets and racks.



Why cabinets? Why racks?


A cabinet is an enclosure with a door (or doors); a rack is an open frame. There are several things you... more/see it nowshould consider when you’re deciding whether you need an enclosed cabinet or a rack.


First, what equipment will you be putting in it? The extra stability of a cabinet might be important if you’re installing large, heavy equipment like servers. But if you need frequent access to all sides of the equipment, an open rack might be more convenient. And if your equipment needs a lot of ventilation, you’ll have to be more careful about the air supply if you enclose it in a cabinet.


Second, in what environment will you be installing it? If the environment is open or dusty, for example, you might need the extra protection of an enclosed cabinet. On the other hand, a rack might be perfectly adequate in a well-maintained data center.


Don’t neglect aesthetics. Will customers or clients see your installation? A cabinet with a door looks much neater than an open rack. When you’re trying to create a professional image, everything counts.


Finally, there’s security. An enclosed cabinet can be locked with a simple lock and key.


On the other hand, there are advantages to open racks, too. It’s easier to get at all sides of the equipment. But you’ll have to take other steps to keep the equipment secure-keeping it in a locked room, for example.


Both cabinets and racks come in all sizes and in many different installation styles. Some are freestanding; some are designed to be mounted on a wall. Others sit on the floor but attach to the wall for more stability.


If you need to set up your installation in a hurry, you can order a preassembled cabinet. You’re ready to load your equipment as soon as the cabinet arrives.


Choosing the right server cabinet.

Consider this quick checklist of features when choosing a server cabinet:

  • High-volume airflow. The requirements for additional airflow increase as more servers are mounted in a cabinet. Additionally, manufacturers are making servers narrower to increase available space. But with more servers in the same amount of space, heat buildup is frequently a problem.
  • Extra depth to accommodate newer, deeper servers.
  • Adjustable rails.
  • Rails with M6 square holes. Although 10-32 tapped and drilled holes are sometimes still required, newer hardware has M6 square holes. Know which type of mounting equipment you’ll need.
  • Front and/or rear accessibility.
NEMA 12 certification.

The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact with the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.


Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible.


Choosing the right rack.

Before you choose a rack, you have to determine what equipment you need to house. This list can include CPUs, monitors, keyboards, modems, servers, switches, hubs, routers, and UPSs. Consider the size and weight of all your equipment as well. The rack must be large and strong enough to hold everything you have now, and you’ll also want to leave extra room for growth.

Most racks are designed to hold equipment that’s 19" (48.3 cm) wide. But height and depth may vary from rack to rack. Common rack heights range from 39" (99.1 cm) to 87" (221 cm).


Another measurement you should know about is the rack unit. One rack unit, abbreviated as U, equals 1.75" (4.4 cm). A rack that is 20U, for example, has 20 rack spaces for equipment, or is 35" high (88.9 cm).


Understanding cabinet and rack measurements.

The main component of a cabinet or rack is a set of vertical rails with mounting holes to which you attach your equipment or shelves. When you consider the width or height of the rack, clarify whether they are inside or outside dimensions.

The first measurement you need to know is the width between the rails. The most common size is 19 inches with hole-to-hole centers measuring 18.3 inches. But there are also 23-inch and 24-inch cabinets and racks. Most rackmount equipment is made to fit 19-inch rails but can be adapted to fit wider rails.


After the width, the most important specification is the number of rack units, abbreviated “U.” It’s a measurement of vertical space available on the rails. Because the width is standard, the amount of vertical space is what determines how much equipment you can actually install. Remember that this measurement of usable vertical space is smaller than the external height of the cabinet or rack.


One rack unit (1U) is 1.75 inches of usable vertical space. So, for example, a rackmount device that’s 2U high will take up 3.5 inches of rack space. A rack that’s 20U high will have 35 inches of usable space.

Because both racks and the equipment that fit in them are usually measured in rack units, it’s easy to figure out how much equipment you can fit in a given cabinet or rack.



Do you need a fan?

Even if your cabinet or rack is in a climate-controlled room, the equipment in it can generate a lot of heat. You may want to consider adding a fan to help keep your equipment from overheating. It’s especially important to have adequate ventilation in an enclosed cabinet.


Getting power to your equipment.

Unless you want to live in a forest of extension cords, you’ll need one or more power strips. Some cabinets come with power strips built in.


If you need to order a power strip, consider which kind will be best for your installation. Rackmount power strips come in versions that mount either vertically or horizontally. Some have outlets that are spaced widely to accommodate transformer blocks-a useful feature if your equipment uses bulky power transformers.


Surge protection is another important issue. Some power strips have built-in surge protection; some don’t. With all the money you have invested in rackmount equipment, you’ll certainly want to make sure it’s protected.


Any mission-critical equipment should also be connected to an uninterruptible power supply (UPS). A UPS keeps your equipment from crashing during a brief blackout or brownout and gives you enough time to shut down everything properly in an extended power outage. You can choose a rackmount UPS for the most critical equipment, or you can plug the whole rack into a standalone UPS.


Managing the cables.

Your equipment may look very tidy when it’s neatly stacked in a cabinet. But you still have an opportunity to make a mess once you start connecting it all. Unless you’re very careful with your cables, you can create a rat’s nest you’ll never be able to sort out.


There are many cabinet and rack accessories that can simplify cable organization. We have Cable Management Guides, Rackmount Cable Raceways, Horizontal Covered Organizers, Vertical Cable Organizers, Horizontal Wire Ring Panels, and Cable Manager Hangers-all designed to help you manage your cables more easily.


Plotting your connections in advance helps you to decide how to organize the cables. Knowing where the connectors are on your equipment tells you where it’s most efficient to run cables horizontally and where it’s better to run them vertically.

The important thing is to have a plan. Most network problems are in the cabling, so if you let your cables get away from you now, you’re sure to pay for it down the road.


Asking for help.

When you’re setting up a cabinet or rack, you have a lot of different factors to consider. Black Box Tech Support is always happy to help you figure out what you need and how to put it together. For cabinets and racks solutions, call our Connectivity Group at 724-746-5500, press 1, 2, 2.

collapse


The difference between unmanaged, managed, and Web-smart switches

With regard to management options, the three primary classes of switches are unmanaged, managed, and Web smart. Which you choose depends largely on the size of your network and how... more/see it nowmuch control you need over that network.

Unmanaged switches are basic plug-and-play switches with no remote configuration, management, or monitoring options, although many can be locally monitored and configured via LED indicators and DIP switches. These inexpensive switches are typically used in small networks or to add temporary workgroups to larger networks.

Managed switches support Simple Network Management Protocol (SNMP) via embedded agents and have a command line interface (CLI) that can be accessed via serial console, Telnet, and Secure Shell. These switches can often be configured and managed as groups. More recent managed switches may also support a Web interface for management through a Web browser.

These high-end switches enable network managers to remotely access a wide range of capabilities including:

  • SNMP monitoring.
  • Enabling and disabling individual ports or port Auto MDI/MDI-X.
  • Port bandwidth and duplex control.
  • IP address management.
  • MAC address filtering.
  • Spanning Tree.
  • Port mirroring to monitor network traffic.
  • Prioritization of ports for quality of service (QoS).
  • VLAN settings.
  • 802.1X network access control.
  • IGMP snooping.
  • Link aggregation or trunking.

  • Managed switches, with their extensive management capabilities, are at home in large enterprise networks where network administrators need to monitor and control a large number of network devices. Managed switches support redundancy protocols for increased network availability.

    Web-smart switches—sometimes called smart switches or Web-managed switches—have become a popular option for mid-sized networks that require management. They offer access to switch management features such as port monitoring, link aggregation, and VPN through a simple Web interface via an embedded Web browser. What these switches generally do not have is SNMP management capabilities or a CLI. Web-smart switches must usually be managed individually rather than in groups.

    Although the management features found in a Web-smart switch are less extensive than those found in a fully managed switch, these switches are becoming smarter with many now offering many of the features of a fully managed switch. Like managed switches, they also support redundancy protocols for increased network availability.

    collapse


    Black Box Explains...Code-operated and matrix switches.

    Code-operated and matrix switches from Black Box give you computer-controlled switching for a variety of applications.

    Code-operated switches
    BLACK BOX® Code-Operated Switches enable one device to control up to 64 connected devices,... more/see it nowdepending on the code-operated switch. For instance, you can use one modem—not eight—to control eight devices. Code-operated switches are ideal for applications that require remote switching for file sharing or monitoring. Use code-operated switches for:
    • Remote programming. Call in via remote sites to access servers, logic controllers, or any devices that require programming.
    • Diagnostics. From your master control room, you can probe servers and run diagnostics.

    Matrix switches
    Matrix switches enable more than one device to control other devices. Any port can connect to any port and perform more than one operation at a time independently. The code-operated switches talk to only one slave port at a time.

    For instance, if your operation has four computers that need to share two printers and one modem, a matrix switch is what you need to handle the job. Use matrix switches for:
    • Industrial applications. You can download instructions remotely to more than one programmable logic controller.
    • Data sharing. PCs or industrial devices can be connected—locally or remotely—to other PCs and industrial devices or for file swapping. collapse


    Using optical break locators and OTDRs.

    An optical time-domain reflectometer, or OTDR, is an instrument used to analyze optical fiber. It sends a series of light pulses into the fiber under test and analyzes the light... more/see it nowthat is scattered and reflected back. These reflections are caused by faults such as breaks, splices, connectors, and adapters along the length of the fiber. The OTDR is able to estimate the overall length, attenuation or loss, and distance to faults. It’s also able to “see” past many of these “events” and display the results. The user is then able to see all the events along the length of the fiber run.

    However, OTDRs do have a weakness?—?a blind spot that prevents them from seeing faults in the beginning of the fiber cable under test. To compensate for this, fiber launch boxes are used. Launch boxes come in predetermined lengths and connector types. These lengths of fiber enable you to compensate for this blind spot and analyze the length of fiber without missing any faults that may be in the first 10–30 meters of the cable.

    An optical break locator, or OBL, is a simplified version of an OTDR. It’s able to detect high-loss events in the fiber such as breaks and determine the distance to the break. OBLs are much simpler to use than an OTDR and require no special training. However, there are limitations. They can only see to the first fault or event and do not display information on the portion of fiber after this event. collapse


    Black Box Explains…A terminal server by any other name.

    A terminal server (sometimes called a serial server or a console server or a device server) is a hardware device that enables you to connect serial devices across a network.

    Terminal... more/see it nowservers acquired their name because they were originally used for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

    The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

    Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

    Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. But if you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


    Black Box Explains...DDS vs. T1.

    DDS (Digital Data Service) is an AT&T® service that transmits data digitally over dedicated leased lines. DDS lines use four wires, and support speeds up to 56 kbps; however, DDS... more/see it nowis actually a 64-kbps circuit with 8 kbps being used for signaling. You can also get 64-kbps (ClearChannel™) service. Since the transmission is digital, no modems are needed. Dedicated digital lines are ideal for point-to-point links in wide-area networks.

    T1 is a dedicated transmission line operating at 1.544 Mbps. It’s comprised of 24 DSOs, each supporting speeds of 64 kbps. The user sends data at N x 56 or N x 64 over T1 circuits. T1 operates over twisted-pair cable and is suitable for voice, data, and image transmissions on long-distance networks. collapse


    Black Box Explains...16850 UART.

    The 16850 Universal Asynchronous Receiver/Transmitter (UART) features a 128-byte First In First Out (FIFO) buffer. When implemented with the appropriate onboard drivers and receivers, it enables your onboard serial ports... more/see it nowto achieve sustained data rates of up to 460.8 kbps.

    The 16850 UART includes automatic handshaking (RTS/CTS) and automatic RS-485 line control. It also features external clocking for isochronous applications, a performance enhancement not offered by earlier UARTs. collapse


    Black Box Explains...MT-RJ fiber optic connectors.

    Bringing fiber to the desktop is a great way to provide your users with increased bandwidth. The first step in achieving this goal is to provide an inexpensive fiber optic... more/see it nowsystem that is intuitive to the end user, easy to terminate in the field, and widely supported by equipment manufacturers. MT-RJ could be the answer to all these requirements.

    A collaborative effort by leading fiber optic manufacturers, MT-RJ has an intuitive RJ latch that users recognize from copper Category 5 patch cords and traditional telephone cords, and it operates in the same way. The plug and jack are also similar in size to traditional RJ-type connectors.

    Field installation, a common concern, is easier because of MT-RJ’s no-polish, no-epoxy, quick-termination design. MT-RJ is available in single- or multimode configurations and is backwards compatible for integration into existing networks. Since MT-RJ has duplex polarity, you don’t have to worry about the polarity reversal that happens with traditional ST type connectors. The TIA/EIA recently voted to accept MT-RJ, indicating wide acceptance of the new design and possible future inclusion in the TIA/EIA 568A standard.

    Black Box, the name you trust to keep you up with the latest industry developments, supports this new technology. collapse


    Black Box Explains...Advantages of fiber optic line drivers.

    Fiber optic line drivers are much better for communications than copper-wire alternatives because they offer three main advantages: superior conductivity, freedom from interference, and security.

    Superior conductivity for increased performance
    The glass... more/see it nowcore of a fiber optic cable is an excellent signal conductor. With proper splices and terminations, fiber cable yields very low signal loss and can easily support data rates of 100 Mbps or more.

    Immunity to electrical interference
    Because fiber optic line drivers use a nonmetallic conductor, they don’t pick up or emit electromagnetic or radio-frequency interference (EMI/RFI). Crosstalk (interference from an adjacent communication channel) is also eliminated, which increases transmission quality.

    Signals transmitted via fiber optic line drivers aren’t susceptible to any form of external frequency-related interference. That makes fiber connections completely immune to damaging power surges, signal distortions from nearby lightning strikes, and high-voltage interference. Because fiber cable doesn’t conduct electricity, it can’t create electrical problems in your equipment.

    Signal security
    Electronic eavesdropping requires the ability to intercept and monitor the electromagnetic frequencies of signals traveling over a copper data wire. Fiber optic line drivers use a light-based transmission medium, so they’re completely immune to electronic bugging. collapse

    Results 21-30 of 207 < 1 2 3 4 5 > >> 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Print
    Black Box 1-877-877-2269 Black Box Network Services