Loading


Content Type (x) > Black Box Explains (x)

Results 21-30 of 212 < 1 2 3 4 5 > >> 

Black Box Explains...Media converters.



Media converters interconnect different cable types such as twisted pair, fiber, and coax within an existing network. They are often used to connect newer Ethernet equipment to legacy cabling.... more/see it nowThey can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference (EMI).


Traditional media converters are purely Layer 1 devices that only convert electrical signals and physical media. They don’t do anything to the data coming through the link so they’re totally transparent to data. These converters have two ports—one port for each media type. Layer 1 media converters only operate at one speed and cannot, for instance, support both 10-Mbps and 100-Mbps Ethernet.


Some media converters are more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services—in other words, they’re really switches. This kind of media converter often has more than two ports, enabling you to, for instance, extend two or more copper links across a single fiber link. They also often feature autosensing ports on the copper side, making them useful for linking segments operating at different speeds.


Media converters are available in standalone models that convert between two different media types and in chassis-based models that connect many different media types in a single housing.




Rent an apartment

Standalone converters convert between two media. But, like a small apartment, they can be outgrown. Consider your current and future applications before selecting a media converter. Standalone converters are available in many configurations, including 10BASE-T to multimode or single-mode fiber, 10BASE-T to Thin coax (ThinNet), 10BASE-T to thick coax (standard Ethernet), CDDI to FDDI, and Thin coax to fiber. 100BASE-T and 100BASE-FX models that connect UTP to single- or multimode fiber are also available. With the development of Gigabit Ethernet (1000 Mbps), media converters have been created to make the transition to high-speed networks easier.




...or buy a house.

Chassis-based or modular media converters are normally rackmountable and have slots that house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and 10BASE-T, 100BASE-TX, 100BASE-FX, and Gigabit modules may also be mixed.

collapse


Black Box Explains... Using fiber optics for KVM extension.

If you‘re sending KVM signals between buildings for an extended distance, in areas supplied by different power sources, in an electrically noisy environment, or where data security is a big... more/see it nowconcern, you need to use a fiber optic-based KVM extender.

Optical fiber is an ideal transmission medium not only for backbone and horizontal connection, but also for workstation-to-backracked CPU or server links. It works very well in applications where you need to transfer large, bandwidth-consuming data files over long distances, and where you require immunity from electrical interference or data theft.

The choice for extraordinary reach.
Fiber doesn’t have the 100-meter (328-ft.) distance limitation that UTP copper without a booster does. Fiber distances can range from 300 meters (984.2 ft.) to 70 kilometers (24.8 mi.), depending on the cable, wavelength, and network. With fiber-based KVM extenders, the transmitter converts conventional data signals into a modulated light beam, then transports the beam via the fiber to a receiver, which converts the light back into electrical signals.

Many newer fiber-based KVM extenders support both analog and digital transmission. Often, they work by digitizing video output from a local CPU, then sending it across fiber link to a remote unit, which converts it back to the original analog signal. In many cases, one fiber of the fiber pair transmits monitor video serially and the second fiber sends remote mouse and keyboard information back to the local CPU.

The choice for ensuring signal integrity.
Because fiber is made of glass, which is an insulator, no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. This is why fiber-based KVM extenders are beneficial to users in process control, engineering, utility, and factory automation applications. The users need to keep critical information safe and secure off the factory floor but be able to access that data from workstations and control consoles within the harsh environments. Plus, fiber is also less susceptible to temperature fluctuations than copper is, and it can be submerged ?in water.

The choice for greater signal fidelity.
Fiber-based KVM extenders can carry more information with greater fidelity than copper-based ones can. For this reason, they’re ideal for high-data-rate systems in which multimedia workstations are used.

Newer KVM extenders enable you to send both DVI and keyboard and mouse signals over the same fiber cable, transmitting video digitally for zero signal loss. This way, you can get HD-quality resolution even at very long distances from the source. Users in university or government R&D, broadcasting, healthcare—basically anyone who depends on detailed image rendering—can benefit from this technology.

The choice for data security.
Plus, your data is safe when using fiber to connect a workstation with a CPU or server under lock and key. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Many IT managers in military, government, finance, and healthcare choose fiber-based KVM extenders for this very reason. Plus corporations, aware of rising data privacy concerns over customer billing information and the need to protect intellectual property, use this type of extension technology in their offices, too.

Considerations for fiber-based KVM extension.
Before selecting a fiber-based KVM extender, it’s important to know the limitations of your system. You need to know where couplers, links, interconnect equipment, and other devices are going to be placed. If it’s a longer run, you have to determine whether multimode or single-mode fiber cable is needed.

The most important consideration in planning cabling for fiber-based KVM extension is the power budget specification of device connection. The receiver at the remote end has to receive the light signal at a certain level. This value, called the loss budget, tells you the amount of loss in decibels (dB) that can be present in the link between the two devices before the units fail to perform properly.

Specifically, this value takes the fiber type (multimode or single-mode) and wavelength you intend to use—and the amount of expected in-line attenuation—into consideration. This is the decrease of signal strength as it travels through the fiber cable. In the budget loss calculation, you also have to account for splices, patch panels, and connectors, where additional dBs may lost in the entire end-to-end fiber extension. If the measured loss is less than the number calculated by your loss budget, your installation is good.

Testers are available to determine if the fiber cabling supports your intended application. You can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget to determine your link loss margin.

Also, in some instances, particularly when using single-mode fiber to drive the signal farther, the signal may be too strong between connected devices. This causes the light signal to reflect back down the fiber cable, which can corrupt data, result in a faulty transmission, and even damage equipment. To prevent this, use fiber attenuators. They’re used with ?single-mode fiber optic devices and cable to filter the strength of the fiber optic signal from the transmitter’s LED output so it doesn’t overwhelm the receiver. Depending on the type of attenuator attached to the devices at each end of the link, you can diminish the strength of the light signal a variable amount by a certain number of decibels.

Need help calculating your budget loss? Call our FREE Tech Support. If necessary, they can even recommend a fusion splicing fiber kit, a fiber tester, or a signal attenuator for your specific requirements. collapse


Black Box Explains...Media converters that are really switches.

A media converter is a device that converts from one media type to another, for instance, from twisted pair to fiber to take advantage of fiber’s greater range. A traditional... more/see it nowmedia converter is a two-port Layer 1 device that performs a simple conversion of only the physical interface. It’s transparent to data and doesn't “see” or manipulate data in any way.

An Ethernet switch can also convert one media type to another, but it also creates a separate collision domain for each switch port, so that each packet is routed only to the destination device, rather than around to multiple devices on a network segment. Because switches are “smarter” than traditional media converters, they enable additional features such as multiple ports and copper ports that autosense for speed and duplex.

Switches are beginning to replace traditional 2-port media converters, leading to some fuzziness in terminology. Small 4- or 6-port Ethernet switches are very commonly called media converters. In fact, anytime you see a “Layer 2” media converter or a media converter with more than two ports, it’s really a small Ethernet switch. collapse


Black Box Explains...Choosing a wireless antenna.


Ride the wave.

One of the most critical components to operating a successful wireless network is having the right antennas. Antennas come in many different shapes and sizes,... more/see it noweach designed for a specific function. Selecting the right antennas for your network is crucial to achieving optimum network performance. In addition, using the right antennas can decrease your networking costs since you’ll need fewer antennas and access points.


Basically, a wireless network consists of data, voice, and video information packets being transmitted over low-frequency radio waves instead of electrically over copper cable or via light over fiber lines. The antenna acts as a radiator and transmits waves through the air, just like radio and TV stations. Antennas also receive the waves from the air and transport them to the receiver, which is a radio, TV, or in the case of wireless networking, a router or an access point.


Type cast.

The type of antennas you use depends on what type of network you’re setting up and the coverage you need. How large is your network? Is it for a home, single office, campus, or larger? Is it point-to-point or multipoint?


The physical design-walls, floors, etc.- of the building(s) you’re working in also affects the type and number of antennas you need. In addition, physical terrain affects your antenna choices. Obviously, a clear line of sight works best, but you need to consider obstructions such as trees, buildings, hills, and water. (Radio waves travel faster over land than water.) You even need to consider traffic noise in urban settings.


The ideal shape.

Let’s take a look at the different types of antennas.


Isotropic Antenna. First, think of the introduction to the old RKO movies. A huge tower sits on top of the world and emanates circular waves in all directions. If you could actually see the waves, they would form a perfect sphere around the tower. This type of antenna is called an isotropic antenna, and does not exist in the real world. It is theoretical and is used as a base point for measuring actual antennas.


Go in the right direction.

Now let’s turn to real-world antennas. There are many types of antennas that emit radio waves in different directions, shapes, and on different planes. Think of the spherical isotropic antenna. If squeezed from the sides, it will become shaped like a wheel and will concentrate waves on a vertical plane. If squeezed from the top, it will flatten out like a pancake and radiate waves on a horizontal plane. Thus, there are two basic types of antennas: directional and omnidirectional.


Directional antennas.

Directional antennas, primarily used in point-to-point networks, concentrate the waves in one direction much like a flashlight concentrates light in a narrow beam. Directional antennas include backfire, Yagi, dish, panel, and sector.


Backfire. This small directional antenna looks like a cake pan with a tin can in the middle. It’s designed to be compact, often under 11" in diameter, making it unobtrusive and practical for outdoor use. These antennas also offer excellent gain, and can be used in both point-to-point or point-to-multipoint systems.


Yagi. The Yagi-Uda (or Yagi) antenna is named for its Japanese inventors. The antenna was originally intended for radio use and is now frequently used in 802.11 wireless systems.


A Yagi antenna is highly directional. It looks like a long fishbone with a central spine and perpendicular rods or discs at specified intervals. Yagi antennas offer superior gain and highly vertical directionality. The longer the Yagi, the more focused its radiation is. Many outdoor Yagi antennas are covered in PVC so you can’t see the inner structure.


Yagi antennas are good for making point-to-point links in long narrow areas (for instance, connecting to a distant point in a valley) or for point-to-point links between buildings. They can also be used to extend the range of a point-to-multipoint network.


Parabolic or Dish. These antennas look like a circular or rectangular concave bowl or "dish". The backboard can be solid or a grid design. Parabolic grid designs are excellent for outdoor use since the wind blows right through them. The concave nature of this dish design focuses energy into a narrow beam that can travel long distances, even up to several miles. This makes parabolic antennas ideal for point-to-point network connections. Since they generate a narrow beam in both the horizontal and vertical planes, offer excellent gain, and minimize interference, they’re ideal for long-distance point-to-point networks.


Panel or Patch. These antennas are often square or rectangular, and they’re frequently hung on walls. They’re designed to radiate horizontally forward and to the side, but not behind them. Sometimes they’re called "picture-frame" antennas.


Panel antennas are ideal in applications where the access point is at one end of a building. They’re good for penetrating a single floor of a building, and for small and medium-size homes and offices. Since they might not have much vertical radiation, they might not be a good choice for multifloor applications.


Because panel antennas can be easily concealed, they’re a good choice when aesthetics are important.


Sector. A sector antenna can be any type of antenna that directs the radio waves in a specific area. They are often large, outdoor flat-panel or dish-type antennas mounted up high and tilted downward toward the ground. These antennas are often used in sprawling campus settings to cover large areas.


Omnidirectional antennas.

Omnidirectional antennas provide the widest coverage possible and are generally used in point-to-multipoint networks. Their range can be extended by overlapping circles of coverage from multiple access points. Most omnidirectional antennas emanate waves in a fan-shaped pattern on a horizontal plane. Overall, omnidirectional antennas have lower gain than directional antennas. Examples of omnidirectional antennas include: integrated, blade, and ceiling.


Integrated. Integrated antennas are antennas that are built into wireless networking devices. They may be embedded in PC card client adapters or in the covers or body of laptops or other devices, such as access points. Integrated antennas often do not offer the same reception as external antennas and might not pick up weak signals. Access points with integral antennas must often be moved or tilted to get the best reception.


Blade. These small, omnidirectional antennas are often housed in long, thin envelopes of plastic. They are most often used to pick up a signal in a low-signal or no-signal spot. You usually will see them on the walls of cubicles, mounted on desktops, or even hung above cubicles to catch signals. They’re basically an inexpensive signal booster.


Ceiling Dome. These are sometimes also called ceiling blister antennas. They look somewhat like a smoke detector and are designed for unobtrusive use in ceilings, particularly drop ceilings. Ceiling dome antennas often have a pigtail for easy connection to access points. They’re excellent for use in corporate environments where wide coverage over a cube farm is needed.


Wave basics.

To better understand wireless antennas and networking, there are some basic measurements and terms that need to be discussed.


Gain. One of the primary measurements of antennas is gain. Gain is measured as dBi, which is how much the antenna increases the transmitter’s power compared to the theoretical isotropic antenna, which has a gain of 0 dBi. dBi is the true gain the antenna provides to the transmitter’s output. Gain is also reciprocal-it’s the same transmitting and receiving. Higher gain means stronger sent and received signals. An easy way to remember gain basics is that every 3 dB of gain added doubles the effective power output of an antenna. The more an antenna concentrates a signal, the higher the gain it will have.


You can actually calculate the gains and losses of a system by adding up the gains and losses of its parts in decibels.


Frequency and Wavelength. Electromagnetic waves are comprised of two components: frequency and wavelength.


Frequency is how many waves occur each second. Wavelength is the distance between one peak of a wave and the next peak. Lower frequencies have longer wavelengths; higher frequencies have shorter wavelengths. For example, the frequency of AM radio is 1 MHz with a wavelength of about 1000 feet. FM radios operate at a much higher frequency of 100 MHz and have a wavelength of about 100 feet.


The two most common frequencies for wireless networking are 2.4-GHz and 5-GHz. Both are very high frequencies with very short wavelengths in the microwave band. The 2.4-GHz frequency has a wavelength of about 5 inches.


Beamwidth. Consider an antenna to be like a flashlight or spotlight. It reflects and directs the light (or radio waves) in a particular direction. Beamwidth actually measures how energy is focused or concentrated.


Polarization. This is the direction in which the antenna radiates wavelengths, either vertically, horizontally, or circularly. Vertical antennas have vertical polarization and are the most common. For optimum performance, it is important that the sending and receiving antennas have the same polarization.


VSWR and Return Loss. Voltage Standing Wave Ratio (VSWR) measures how well the antenna is matched to the network at the operating frequency being used. It indicates how much of the received signal won’t reach either the transceiver or receiver. Return loss measures how well matched an antenna is to the network. Typical VSWR numbers are 1:1.2 or 1:1.5. A typical return loss number is 20.

collapse


Black Box Explains...Breakout-style cables.

With breakout- or fanout-style cables, the fibers are packaged individually. A breakout cable is basically several simplex cables bundled together in one jacket. Breakout cables are suitable for riser and... more/see it nowplenum applications, and conduit runs.

This differs from distribution-style cables where several tight-buffered fibers are bundled under the same jacket.

This design of the breakout cable adds strength to the cable, although that makes it larger and more expensive than distribution-style cables.

Because each fiber is individually reinforced, you can divide the cable into individual fiber lines. This enables quick connector termination, and eliminates the need for patch panels.

Breakout cable can also be more economical because it requires much less labor to terminate.

You may want to choose a cable that has more fibers than you actually need in case of breakage during termination or for future expansion. collapse


Black Box Explains...Wireless Ethernet standards.

IEEE 802.11
The precursor to 802.11b, IEEE 802.11 was introduced in 1997. It was a beginning, but 802.11 only supported speeds up to 2 Mbps. And it supported two entirely different... more/see it nowmethods of encoding—Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). This led to confusion and incompatibility between different vendors’ equipment.

IEEE 802.11b
802.11b is comfortably established as the most popular wireless standard. With the IEEE 802.11b Ethernet standard, wireless is fast, easy, and affordable. Wireless devices from all vendors work together seamlessly. 802.11b is a perfect example of a technology that has become both sophisticated and standardized enough to really make life simpler for its users.

The 802.11b extension of the original 802.11 standard boosts wireless throughput from 2 Mbps all the way up to 11 Mbps. 802.11b can transmit up to 200 feet under good conditions, although this distance may be reduced considerably by the presence of obstacles such as walls.

This standard uses DSSS. With DSSS, each bit transmitted is encoded and the encoded bits are sent in parallel across an entire range of frequencies. The code used in a transmission is known only to the sending and receiving stations. By transmitting identical signals across the entire range of frequencies, DSSS helps to reduce interference and makes it possible to recover lost data without retransmission.

IEEE 802.11a
The 802.11a wireless Ethernet standard is new on the scene. It uses a different band than 802.11b—the 5.8-GHz band called U-NII (Unlicensed National Information Infrastructure) in the United States. Because the U-NII band has a higher frequency and a larger bandwidth allotment than the 2.4-GHz band, the 802.11a standard achieves speeds of up to 54 Mbps. However, it’s more limited in range than 802.11b. It uses an orthogonal frequency-division multiplexing (OFDM) encoding scheme rather than FHSS or DSSS.

IEEE 802.11g
802.11g is an extension of 802.11b and operates in the same 2.4-GHz band as 802.11b. It brings data rates up to 54 Mbps using OFDM technology.

Because it's actually an extension of 802.11b, 802.11g is backward-compatible with 802.11b—an 802.11b device can interface directly with an 802.11g access point. However, because 802.11g also runs on the same three channels as 802.11b, it can crowd already busy frequencies.

Super G® is a subset of 802.11g and is a proprietary extension of the 802.11g standard that doubles throughput to 108 Mbps. Super G is not an IEEE approved standard. If you use it, you should use devices from one vendor to ensure compatibility. Super G is generally backwards compatible with 802.11g.

802.11n
80211n improves upon 802.11g significantly with an increase in the data rate to 600 Mbps. Channels operate at 40 MHz doubling the channel width from 20 MHz. 802.11n operates on both the 2.4 GHz and the 5 GHz bands. 802.11n also added multiple-input multiple-output antennas (MIMO) collapse


Black Box Explains...UARTs and PCI buses.

Universal Asynchronous Receiver/Transmitters UARTs are designed to convert sync data from a PC bus to an async format that external I/O devices such as printers or modems use. UARTs insert... more/see it nowor remove start bits, stop bits, and parity bits in the data stream as needed by the attached PC or peripheral. They can provide maximum throughput to your high-performance peripherals without slowing down your CPU.

In the early years of PCs and single-application operating systems, UARTs interfaced directly between the CPU bus and external RS-232 I/O devices. Early UARTs did not contain any type of buffer because PCs only performed one task at a time and both PCs and peripherals were slow.

With the advent of faster PCs, higher-speed modems, and multitasking operating systems, buffering (RAM or memory) was added so that UARTs could handle more data. The first buffered UART was the 16550 UART, which incorporates a 16-byte FIFO (First In First Out) buffer and can support sustained data-transfer rates up to 115.2 kbps.

The 16650 UART features a 32-byte FIFO and can handle sustained baud rates of 460.8 kbps. Burst data rates of up to 921.6 kbps have even been achieved in laboratory tests.

The 16750 UART has a 64-byte FIFO. It also features sustained baud rates of 460.8 kbps but delivers better performance because of its larger buffer.

Used in newer PCI cards, the 16850 UART has a 128-byte FIFO buffer for each port. It features sustained baud rates of 460.8 kbps.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed peripherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

A Universal PCI (uPCI) card has connectors that work with both a newer 3.3-V power supply and motherboard and with older 5.5-V versions. collapse


Black Box Explains... G.703.

G.703 is the ITU-T recommendation covering the 4-wire physical interface and digital signaling specification for transmission at 2.048 Mbps (E1). G.703 also includes specifications for U.S. 1.544-Mbps T1 but is... more/see it nowstill generally used to refer to the European 2.048-Mbps transmission interface. collapse


Black Box Explains... SCSI termination

Passive termination
This is the oldest method of termination. A passive terminator sits on the bus to minimize reflections at the end of the cable. Passive terminators simply provide impedance close... more/see it nowto that of the cable. The terminator is “passive” because it doesn’t do any work to regulate power for termination; it relies on the interface card to provide steady power.

Active termination
This is a more stable form of terminating SCSI cables. Active terminators control the impedance at the end of the SCSI bus by using a voltage regulator, not just the power supplied by the interface card.

Forced-perfect termination
Of all SCSI terminators, this is the most complex. A cable with a forced-perfect terminator can actually change its impedance to compensate for variations along the bus. Forced-perfect terminators force the impedance of the cable to match each device through diode switching and biasing. collapse


Black Box Explains…Cooling blade servers.

Blade servers are hot. Really hot. These slim, high-powered CPUs generate heat like nothing you’ve ever installed in your data center before—a rack of blade servers can generate more heat... more/see it nowthan an electric oven! And as temperatures rise, servers may fail, leading to downtime and even data loss.

Needless to say, blade servers present a cooling challenge. If you plan to install them, you need to make sure you can accommodate their cooling needs.

Computer rooms have special equipment such as raised-floor cooling systems to meet their high cooling requirements, but it’s also important to ensure that cabinets used to house blade servers provide adequate ventilation—even in a cool room, hot spots can develop inside cabinets if air distribution is inadequate.

If you’re planning to install blade servers or other high-density components in cabinets, look for a cabinet with fully perforated doors in the front and rear— the greater the amount of perforation, the more cool air can be delivered to the components.

Don’t overload the cabinet by trying to fit in too many servers—75% to 80% of capacity is about right. Leave at least 1U of space between rows of servers for front-to-back ventilation. And finally, ensure all unused rack space is closed off with blank panels to prevent recirculation of warm air back to the front of the cabinet.

If you need help calculating your system’s cooling needs, contact our FREE Tech Support.
collapse

Results 21-30 of 212 < 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services