Loading


Content Type (x) > Black Box Explains (x)

Results 151-160 of 213 << < 16 17 18 19 20 > >> 

USB 3.0

The newest USB standard, USB 3.0 or “SuperSpeed USB," provides vast improvements over USB 2.0. USB 3.0 promises speeds up to 5 Gbps, about ten times that of USB 2.0.... more/see it now

USB 3.0 uses a sync-n-go technology that minimizes user wait time. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus. It has the flat USB Type A plug, but inside there is an extra set of connectors, and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors.

USB 3.0 cable contains nine wires, four more than USB 2.0, which has one pair for data and one pair for power. USB 3.0 adds two more data pairs, for a total of eight plus a ground. These extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 is much more power efficient than USB 2.0. It provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It is also better at conserving power, when compared to USB 2.0, which uses power when the cable or device isn’t being used. With USB 3.0, when devices are idle, it doesn't broadcast packets or perform polling.

USB 3.0 is completely backwards compatible with USB 2.0. Applications built to the USB 2.0 spec will work seamlessly with USB 3.0. collapse


Black Box Explains…Cooling blade servers.

Blade servers are hot. Really hot. These slim, high-powered CPUs generate heat like nothing you’ve ever installed in your data center before—a rack of blade servers can generate more heat... more/see it nowthan an electric oven! And as temperatures rise, servers may fail, leading to downtime and even data loss.

Needless to say, blade servers present a cooling challenge. If you plan to install them, you need to make sure you can accommodate their cooling needs.

Computer rooms have special equipment such as raised-floor cooling systems to meet their high cooling requirements, but it’s also important to ensure that cabinets used to house blade servers provide adequate ventilation—even in a cool room, hot spots can develop inside cabinets if air distribution is inadequate.

If you’re planning to install blade servers or other high-density components in cabinets, look for a cabinet with fully perforated doors in the front and rear— the greater the amount of perforation, the more cool air can be delivered to the components.

Don’t overload the cabinet by trying to fit in too many servers—75% to 80% of capacity is about right. Leave at least 1U of space between rows of servers for front-to-back ventilation. And finally, ensure all unused rack space is closed off with blank panels to prevent recirculation of warm air back to the front of the cabinet.

If you need help calculating your system’s cooling needs, contact our FREE Tech Support.
collapse


Black Box Explains...Connectors.



Click on the image below for a larger view.


Black Box Explains... Smart Serial Interface

Smart Serial is the Cisco router interface. It uses a space-saving 26-pin connector that automatically detects RS-232, RS-449, RS-530, X.21, and V.35 interfaces for both DTE and DCE devices based... more/see it nowon the type of cable used.

Smart Serial connectors can be found on Smart Serial cables and on the dual-serial-port WAN interface cards used in Cisco 2600 and 1720 series routers. The cables feature a Smart Serial connector on one end and a standard cable connector (such as DB25 or V.35) on the other end. The Smart Serial connector attaches to the dual-serial-port WAN interface card.

Each port on the WAN interface card features a Smart Serial connector. Ports can be configured independently to support two different physical interfaces. For example, you can run RS-232 cable to one port and RS-449 cable to the other port using a single WAN interface card.

What if you need to replace that RS-232 cable with V.35 cable? Just plug a Smart Serial–V.35 cable into the port. Because any Smart Serial connector on the WAN interface card attaches to any Smart Serial cable connector, no additional interface or adapter is necessary. Changing the configuration of your network is literally a snap! collapse


Black Box Explains...SCSI Ultra2 and LVD (Low-Voltage Differential).

Small Computer Systems Interface (SCSI), pronounced “scuzzy,” has been the dominant technology used to connect computers and high-speed peripherals since the 1980s. SCSI technology is constantly evolving to accommodate increased... more/see it nowbandwidth needs. One of the more recent developments is Ultra2 SCSI.

Because Ultra2 SCSI is backward compatible, it works with all legacy equipment. Ultra2 doubles the possible bandwidth on the bus from 40 to 80 MBps! Just as importantly, Ultra2 supports distances up to 12 meters (39.3 ft.) for a multiple-device configuration. Ultra2 uses Low-voltage Differential (LVD) techniques to transfer data at faster rates with fewer errors. Don’t confuse Ultra2 with LVD. Ultra2 is a data-transfer method; LVD is the signaling technique used to transfer the data.

Cables are very important when designing or upgrading a system to take advantage of Ultra2 SCSI. Cables and connectors must be of high quality and they should come from a reputable manufacturer to prevent crosstalk and minimize signal radiation. BLACK BOX® Ultra2 LVD cables are constructed of the finest-quality components to provide your system with the maximum protection and highest possible data-transfer rates. collapse


Black Box Explains...Speaker sound quality.

A human with keen hearing can hear sounds within a range of about 20 Hz to 20 KHz. But most human speech is centered in the 1000 Hz range, so... more/see it nowmost old-fashioned analog telephone networks provided audio bandwidth only in this range. This range transmits most voice information but can fail to register voice subtleties and inflections.

Because these older analog phone systems had such a narrow bandwidth, headset manufacturers built their products to operate only in those particular frequencies.

When digital networks and fiber optic connections came into use, however, they provided a much wider bandwidth for voice transmission. This led to a corresponding increase in headset sound quality.

Today, quality headsets take advantage of increased network bandwidth and typically can reproduce sounds in the 300 Hz to 3500 Hz range. This makes voices far easier to understand and enables you to pick up all the nuances and inflections of your caller’s voice. collapse


Black Box Explains... Advantages of the MicroRACK system.

• Midplane architecture—Separate front and rear cards make changing interfaces easy.
• Multiple functions—Supports line drivers, interface converters, fiber modems, CSU/DSUs, and synchronous modem eliminators.
• Hot swappable—MicroRACK Cards can be replaced... more/see it nowwithout powering down, so you cut your network’s downtime.
• Two-, four-, and eight-port MicroRACKs—available for smaller or desktop installations. They’re just right for tight spaces that can’t accommodate a full-sized (16-port) rack.
• Optional dual cards—Some Mini Driver Cards have two drivers in one card. One MicroRACK chassis can hold up to 32 Mini Drivers!
• All standard connections available—DB25, RJ-11, RJ-45, fiber, V.35.
• Choose you own power supply—120–240 VAC, 12 VDC, 24 VDC, or 48 VDC. collapse


Black Box Explains...The MPO connector.

MPO stands for multifiber push-on connector. It is a connector for multifiber ribbon cable that generally contains 6, 8, 12, or 24 fibers. It is defined by IEC-61754-7 and EIA/TIA-604-5-D,... more/see it nowalso known as FOCIS 5. The MPO connector, combined with lightweight ribbon cable, represents a huge technological advance over traditional multifiber cables. It’s lighter, more compact, easier to install, and less expensive.

A single MPO connector replaces up to 24 standard connectors. This very high density means lower space requirements and reduced costs for your installation. Traditional, tight-buffered multifiber cable needs to have each fiber individually terminated by a skilled technician. But MPO fiber optic cable, which carries multiple fibers, comes preterminated. Just plug it in and you’re ready to go.BR>
MPO connectors feature an intuitive push-pull latching sleeve mechanism with an audible click upon connection and are easy to use. The MPO connector is similar to the MT-RJ connector. The MPO’s ferrule surface of 2.45 x 6.40 mm is slightly bigger than the MT-RJ’s, and the latching mechanism works with a sliding sleeve latch rather than a push-in latch.

The MPO connector can be either male or female. You can tell the male connector by the two alignment pins protruding from the end of the ferrule. The MPO ferrule is generally flat for multimode applications and angled for single-mode applications.

MPO connectors are also commonly called MTP® connectors, which is a registered trademark of US Conec. The MTP connector is an MPO connector collapse


Using optical break locators and OTDRs.

An optical time-domain reflectometer, or OTDR, is an instrument used to analyze optical fiber. It sends a series of light pulses into the fiber under test and analyzes the light... more/see it nowthat is scattered and reflected back. These reflections are caused by faults such as breaks, splices, connectors, and adapters along the length of the fiber. The OTDR is able to estimate the overall length, attenuation or loss, and distance to faults. It’s also able to “see” past many of these “events” and display the results. The user is then able to see all the events along the length of the fiber run.

However, OTDRs do have a weakness?—?a blind spot that prevents them from seeing faults in the beginning of the fiber cable under test. To compensate for this, fiber launch boxes are used. Launch boxes come in predetermined lengths and connector types. These lengths of fiber enable you to compensate for this blind spot and analyze the length of fiber without missing any faults that may be in the first 10–30 meters of the cable.

An optical break locator, or OBL, is a simplified version of an OTDR. It’s able to detect high-loss events in the fiber such as breaks and determine the distance to the break. OBLs are much simpler to use than an OTDR and require no special training. However, there are limitations. They can only see to the first fault or event and do not display information on the portion of fiber after this event. collapse


Black Box Explains...Media converters.



Media converters interconnect different cable types such as twisted pair, fiber, and coax within an existing network. They are often used to connect newer Ethernet equipment to legacy cabling.... more/see it nowThey can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference (EMI).


Traditional media converters are purely Layer 1 devices that only convert electrical signals and physical media. They don’t do anything to the data coming through the link so they’re totally transparent to data. These converters have two ports—one port for each media type. Layer 1 media converters only operate at one speed and cannot, for instance, support both 10-Mbps and 100-Mbps Ethernet.


Some media converters are more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services—in other words, they’re really switches. This kind of media converter often has more than two ports, enabling you to, for instance, extend two or more copper links across a single fiber link. They also often feature autosensing ports on the copper side, making them useful for linking segments operating at different speeds.


Media converters are available in standalone models that convert between two different media types and in chassis-based models that connect many different media types in a single housing.




Rent an apartment

Standalone converters convert between two media. But, like a small apartment, they can be outgrown. Consider your current and future applications before selecting a media converter. Standalone converters are available in many configurations, including 10BASE-T to multimode or single-mode fiber, 10BASE-T to Thin coax (ThinNet), 10BASE-T to thick coax (standard Ethernet), CDDI to FDDI, and Thin coax to fiber. 100BASE-T and 100BASE-FX models that connect UTP to single- or multimode fiber are also available. With the development of Gigabit Ethernet (1000 Mbps), media converters have been created to make the transition to high-speed networks easier.




...or buy a house.

Chassis-based or modular media converters are normally rackmountable and have slots that house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and 10BASE-T, 100BASE-TX, 100BASE-FX, and Gigabit modules may also be mixed.

collapse

Results 151-160 of 213 << < 16 17 18 19 20 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services