Loading


Content Type (x) > Black Box Explains (x)

Results 151-160 of 203 << < 16 17 18 19 20 > >> 

Black Box Explains...Industrial Ethernet (Ethernet/IP) and IP-rated connectors.

Ethernet technology is coming to the factory floor. Once limited to office environments, Ethernet has proven to be a robust alternative to the RS-232 interface traditionally used with industrial devices... more/see it nowsuch as programmable logic controllers. Ethernet brings speed, versatility, and cost savings to industrial environments.

The requirements of industrial environments are different than offices, so there are industrial Ethernet standards. The most common is the Ethernet/Industrial Protocol (Ethernet/IP) standard, usually called Industrial Ethernet. Industrial Ethernet adapts ordinary, off-the-shelf IEEE 802.3 Ethernet communication chips and physical media to industrial applications.

The Ingress Protection (IP) ratings developed by the European Committee for Electrotechnical Standardization (CENELEC) specify the environmental protection an enclosure provides.

An IP rating consists of two or three numbers. The first number refers to protection from solid objects or materials; the second number refers to protection from liquids; and the third number, commonly omitted from the rating, refers to protection against mechanical impacts. An IP67 rating means that a connector is totally protected from dust and from the effects of immersion in 5.9 inches (15 cm) to 3.2 feet (1 m) of water for 30 minutes.

Because office-grade RJ-45 connectors do not stand up to an industrial environment, the Ethernet/IP standard calls for sealed industrial RJ-45 connectors that meet an IP67 standard, meaning the connectors are sealed against dust and water. collapse


Black Box Explains... Multiplatform cabling environments.

When using a ServSwitch™ with multiple computer platforms, choosing which peripherals to use to control your diverse group of CPUs can be confusing. Because of the wide variation in connector... more/see it nowtypes and compatibilities, there is a hierarchy to follow when choosing your “user station“ keyboard, monitor, and mouse.

1. If you have at least one Sun® computer in your application, you should use a Sun keyboard and mouse to control your CPUs.

2. If you have a mixture of PCs and Mac® computers, use your PC-style keyboard and mouse to control your CPUs. collapse


Black Box Explains...Power problems.

Sags
The Threat — A sag is a decline in the voltage level. Also known as “brownouts,” sags are the most common power problem.

The Cause — Sags can be caused... more/see it nowlocally by the start-up demands of electrical devices such as motors, compressors, and elevators. Sags may also happen during periods of high electrical use, such as during a heat wave.

The Effect — Sags are often the cause of “unexplained” computer glitches such as system crashes, frozen keyboards, and data loss. Sags can also reduce the efficiency and lifespan of electrical motors.

Blackouts
The Threat — A blackout is a total loss of power.

The Cause — Blackouts are caused by excessive demand on the power grid, an act of nature such as lightning or an earthquake, or a human accident such as a car hitting a power pole or a backhoe digging in the wrong place.

The Effect — Of course a blackout brings everything to a complete stop. You also lose any unsaved data stored in RAM and may even lose the total contents of your hard drive.

Spikes
The Threat — A spike, also called an impulse, is an instantaneous, dramatic increase in voltage.

The Cause — A spike is usually caused by a nearby lightning strike but may also occur when power is restored after a blackout.

The Effect — A spike can damage or completely destroy electrical components and also cause data loss.

Surges
The Threat — A surge is an increase in voltage lasting at least 1/120 of a second.

The Cause — When high-powered equipment such as an air conditioner is powered off, the excess voltage is dissipated though the power line causing a surge.

The Effect — Surges stress delicate electronic components causing them to wear out before their time.

Noise
The Threat — Electrical noise, more technically called electromagnetic interference (EMI) and radio frequency interference (RFI), interrupts the smooth sine wave expected from electrical power.

The Cause — Noise has many causes including nearby lightning, load switching, industrial equipment, and radio transmitters. It may be intermittent or chronic.

The Effect — Noise introduces errors into programs and data files. collapse


Black Box Explains...Designing your wireless network.



Setting up wireless devices that belong to the 802.11 family is relatively simple, but you do have to pay attention to a few simple factors.


Ad-hoc or infrastructure... more/see it nowmode?

The 802.11 wireless standards support two basic configurations: ad-hoc mode and infrastructure mode.


In ad-hoc mode, wireless user devices such as laptop computers and PDAs communicate directly with each other in a peer-to-peer manner without the benefit of access points.


Ad-hoc mode is generally used to form very small spontaneous networks. For instance, with ad-hoc mode, laptop users in a meeting can quickly establish a small network to share files.


Infrastructure mode uses wireless access points to enable wireless devices to communicate with each other and with your wired network. Most networks use infrastructure mode.


The basic components of infrastructure mode networks include:

  • The radios embedded or installed within the wireless devices themselves. Many notebook computers and other Wi-Fi-compliant mobile devices, such as PDAs, come with the transmitters built in. But for others, you need to install a card-type device to enable wireless communications. Desktop PCs may also need an ISA or a PCI bus adapter to enable the cards to work.
  • The access point, which acts as a base station that relays signals between the 802.11 devices.
One or many access points?

Access points are standalone hardware devices that provide a central point of communication for your wireless users. How many you need in your application depends on the number of users and the amount of bandwidth required by each user. Bandwidth is shared, so if your network has many users who routinely send data-heavy multimedia files, additional access points may be required to accommodate the demand.


A small-office network with fewer than 15 users may need just 1 access point. Larger networks require multiple points. If the hardware supports it, you can overlap coverage areas to allow users to roam between cells without any break in network coverage. A user’s wireless device picks up a signal beacon from the strongest access point to maintain seamless coverage.


How many access points to use also depends on your operating environment and the required range. Radio propagation can be affected by walls and electrical interference that can cause signal reflection and fading. If you’re linking mobile users indoors-where walls and other obstructions impede the radiated signal-the typical maximum range is 150 feet. Outdoors, you can get greater WLAN range-up to 2000 feet (depending on your antenna type) where there’s a clear line of sight!


For optimal speed and range, install your wireless access point several feet above the floor or ground and away from metal equipment or large appliances that may emit interference.


Battle of the bands.

In addition to sharing bandwidth, users also share a band. Most IEEE 802.11 or 802.11b devices function in the 2.4-2.4835-GHz band. But these frequencies are often congested, so you may want to use devices that take advantage of the IEEE 802.11a 5.725-5.825-GHz band.


No matter what frequency you use, you’ll want to isolate your users from outsiders using the same frequency. To do this, assign your users a network identifier, such as an Extended Service Set Identifier (ESSID), as well as distinct channels.


Web and wired network links.

The access point links your wireless network to your wired network, enabling your wireless users to access shared data resources and devices across your LAN enterprise. Some access points even feature capabilities for routing traffic in one or both directions between a wired and wireless network.


For Internet access, connect a broadband router with an access point to an Internet connection over a broadband service such as DSL, cable modem, or satellite.


For connecting network printers, you can dedicate a computer to act as a print server or add a wireless print server device; this enables those on your wireless network to share printers.


When to use external antennas.

If you plan to install access points, you can boost your signal considerably by adding external antennas. Various mounting configurations and high- and low-gain options are available.


You can also use add-on antennas to connect nodes where the topology doesn’t allow for a clear signal between access points. Or use them to link multiple LANs located far apart.


Additional external antennas are also useful to help overcome the effects of multipath propagation in which a signal takes different paths and confuses the receiver. It’s also helpful to deploy antennas that propagate the signal in a way that fits the environment. For instance, for a long, narrow corridor, use an antenna that focuses the RF pattern in one direction instead of one that radiates the signal in all directions.


Plan ahead with a site survey.

A site survey done ahead of time to plot where the signal is the strongest can help you identify problem areas and avoid dead spots where coverage isn’t up to par or is unreliable. For this, building blueprints are helpful in revealing potential obstructions that you might not see in your physical site walkthrough.


To field test for a clear signal path, attach an antenna to an access point or laptop acting as the transmitter at one end. Attach another antenna to a wireless device acting as a receiver at the other end. Then check for interference using RF test equipment (such as a wireless spectrum analyzer) and determine whether vertical or horizontal polarization will work best.


Need help doing this? Call us. We even offer a Site Survey Kit that has a variety of antennas included. Great for installers, the kit enables you to test a variety of antennas in the field before placing a larger antenna order.

collapse


Black Box Explains…Terminating fiber.

Terminating fiber cable used to be a job for experts only. But today, prepolished connectors make it possible for anyone to terminate multimode fiber—all you need is a bit of... more/see it nowpatience and the right tools. Here’s how to terminate fiber with ST connectors:

Step 1 — Slide the connector strain-relief boot, small end first, onto the cable.

Step 2 — Using a template, mark the jacket dimensions to be stripped (40 mm and 52 mm from the end).

Step 3 — Remove the outer jacket from the cable end to the 40 mm mark. Cut the exposed Kevlar. Carefully remove the jacket to the 52-mm mark, exposing the remaining length of Kevlar.

Step 4 — Fan out the Kevlar fibers and slide the crimp ring of the connector approximately 5 mm over the fibers to hold them out of the way. Mark the fiber buffer 11 mm from the end of the cable jacket. Also, mark the buffer where it meets the jacket.

Step 5 — Bit by bit, strip off the buffering until you reach the 11-mm mark. Check the mark you made on the buffer at the jacket. If it’s moved, carefully work the buffer back into the jacket to its original position.

Step 6 — Clean the glass fiber with an alcohol wipe. Cleave the fiber to an 8-mm length.

Step 7 — Carefully insert the fiber into the connector until you feel it bottom out and a bow forms between the connector and the clamp. Cam the connector with the appropriate tool.

Step 8 — Crimp the connector.

Step 9 — Slide the crimp ring up the jacket away from the connector, releasing the Kevlar fibers. Fan the fiber so they encircle the buffer. The ends of the fibers should just touch the rear of the connector—if they’re too long, trim them now.

Step 10 — Crimp the connector again.

Step 11 — Slide the strain-relief boot over the rear of the connector. You might want to put a bead of 411 Loctite adhesive for extra strength on the rear of the boot where it meets the jacket.

Although the details may vary slightly with different connectors and termination kits, the basic termination procedure is the same. collapse


Black Box Explains... Video extenders with built-in skew compensation.

To ensure the best video resolution, it’s important to match your video extension device with a compatible grade of cable. Some multimedia extenders are not designed to transmit video across... more/see it nowcable that’s higher than CAT5. In fact, with these extenders, the higher-grade cable may actually degrade video.

The problem is with the cable twists of CAT5e and CAT6 cables. To reduce signaling crosstalk, these higher-grade cables have tighter twists—and more of them—than CAT5 cable does. For this reason, the wire distance that an electrical signal has to travel is different for each pair. This doesn’t normally cause a problem with data, but if you’re sending higher-resolution analog video signals across long cables, you may see color separation caused by the video signals arriving at different times.

To avoid this, you could use only the lower-grade cable with the extenders. But what if you already have CAT5e or higher cable installed in your building, or you simply want the latest and greatest copper wiring? Order an extender receiver that features built-in skew compensation so it can work properly with higher cable grades at longer distances. collapse


Black Box Explains... Baseband, broadband, and carrierband transmissions.

Depending on the environment and how the electrical signal is sent over the cable, coax can be used for three types of transmissions.

Baseband transmissions use the entire communication channel capacity... more/see it nowto transmit a single data signal. Many LANs employ Thin coax for baseband signaling.

Broadband transmissions use different frequencies to carry several analog signals simultaneously. Each signal can for be a different type of information—data, voice, even video. Broadband transmissions over coax employ either one or two cables. With single-cable coax wiring, frequencies are split into individual channels for each station; some channels are allocated for bidirectional communication. Dual-cable coax wiring uses one cable for sending and one cable for receiving data, each with multiple channels. Broadband transmissions are ideal for long distances. Thick coax is often used for broadband transmissions.

Unlike broadband transmissions, carrierband transmissions can only use one information channel. Carrierband is best suited for the horizontal subsystems (subnetworks) in industrial settings. Many LANs use Thin coax for carrierband signaling. collapse


Black Box Explains...Digital Visual Interface (DVI) and other digital display interfaces.

There are three main types of digital video interfaces: P&D, DFP, and DVI. P&D (Plug & Display, also known as EVC), the earliest of these technologies, supports both digital and... more/see it nowanalog RGB connections and is now used primarily on projectors. DFP (Digital Flat-Panel Port) was the first digital-only connector on displays and graphics cards; it’s being phased out.

There are different types of DVI connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC.

DVI-D is a digital-only connector. DVI-I supports both digital and analog RGB connections. Some manufacturers are offering the DVI-I connector type on their products instead of separate analog and digital connectors. DVI-A is used to carry an analog DVI signal to a VGA device, such as a display. DFP, like DVI-D, was an early digital-only connector used on some displays; it’s being phased out. EVC (also known as P&D) is similar to DVI-I only it’s slightly larger in size. It also handles digital and analog connections, and it’s used primarily on projectors.

All these standards are based on transition-minimized differential signaling (TMDS). In a typical single-line digital signal, voltage is raised to a high level and decreased to a low level to create transitions that convey data. TMDS uses a pair of signal wires to minimize the number of transitions needed to transfer data. When one wire goes to a high-voltage state, the other goes to a low-voltage state. This balance increases the data-transfer rate and improves accuracy. collapse


Black Box Explains... Guidelines for choosing fiber optic cable.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. It’s favored for applications that... more/see it nowneed high bandwidth, long distances, and complete immunity to electrical interference.

It’s ideal for high-data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances.

Fiber offers the following advantages:

Greater bandwidth—Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase.

Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber and many CATV companies are converting to fiber.

Low attenuation and greater distance—Because the fiber optic signal is made of light, very little signal loss occurs during transmission, and data can move at higher speeds and greater distances. Fiber does not have the 100-meter (328-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters (984.2 ft.) to 40 kilometers (24.8 mi.), depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.

Security—Your data is safe with fiber cable. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.

Immunity and reliability—Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The core is made of glass, which is an insulator, so no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.

Design—Fiber is lightweight, thin, and more durable than copper cable. Plus, fiber optic cable has pulling specifications that are up to 10 times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper, advancements in connectors are making termination easier. In addition, fiber is actually easier to test than copper cable.

Migration—The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.

Standards—TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). An addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet (10-GbE) standard.

Costs—The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.

Types of fiber cable and standards.

Multimode, 50- and 62.5-micron cable—Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be used for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable—Single-mode cable has a small 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber. collapse


Black Box Explains...Gold plating.

Get premium-quality connectors from Black Box. The 24-karat gold plating ensures better signal transmission and no corrosion. The shielding and heavy gold conductors provide improved performance.

Results 151-160 of 203 << < 16 17 18 19 20 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services