Content Type (x) > Black Box Explains (x)

Results 151-160 of 214 << < 16 17 18 19 20 > >> 

Black Box Explains...On-screen menus.

When the ServSwitch™ brand of KVM switches was first introduced, there were only two ways to switch: from front-panel push buttons or by sending command sequences from the keyboard. While... more/see it nowthis was more convenient than having a separate keyboard, monitor, and mouse for each CPU, the operator still had to remember key combinations and which server was connected to which port—leading to many cryptic, scribbled notes attached to the switch and to the workstation.

But with the advent of on-screen menus, an operator can use easy-to-read, pop-up menus to identify and select CPUs. It’s even possible to give each CPU a name that makes sense to you—names like “MIS Server,” “Accounting Server,” and so on.

Black Box Explains…Before the ServSwitch.

Before the introduction of the ServSwitch, accessing more than one CPU from a single keyboard, monitor, and mouse was problematic. Keyboard/video (KV) or keyboard/video/mouse (KVM) switches frequently caused CPUs to... more/see it nowlock up because the CPUs weren’t always receiving the signals they expected from the keyboard. Managing server farms was a nuisance because either each server needed its own keyboard, monitor, and mouse, it or was subject to frequent rebooting if used with a KVM switch.

The BLACK BOX® ServSwitch™ KVM Switch changed all that. The ServSwitch enables frequent switching between multiple CPUs (up to 3000!) without the danger of CPUs locking up. That’s because the ServSwitch is built with sophisticated circuitry that keeps feeding each CPU the keyboard and mouse signals it expects.

So why are we still selling preServSwitch keyboard/video switches? The Number 1 reason is many of our customers have preinstalled applications in which these switches are specified, so we keep stocking them as a service. Another reason is there is still some call for these switches for applications in which only limited switching is required.

However, for most KVM applications, we recommend a BLACK BOX® ServSwitch™ KVM Switch as the most reliable switching solution. We have ServSwitch products and accessories for everything from a simple desktop application to managing all the servers in your enterprise network.

Simplify and save with BLACK BOX® ServSwitch™ Technology! collapse

Black Box Explains... Guidelines for choosing fiber optic cable.

Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. It’s favored for applications that... more/see it nowneed high bandwidth, long distances, and complete immunity to electrical interference.

It’s ideal for high-data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances.

Fiber offers the following advantages:

Greater bandwidth—Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase.

Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber and many CATV companies are converting to fiber.

Low attenuation and greater distance—Because the fiber optic signal is made of light, very little signal loss occurs during transmission, and data can move at higher speeds and greater distances. Fiber does not have the 100-meter (328-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters (984.2 ft.) to 40 kilometers (24.8 mi.), depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.

Security—Your data is safe with fiber cable. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.

Immunity and reliability—Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The core is made of glass, which is an insulator, so no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.

Design—Fiber is lightweight, thin, and more durable than copper cable. Plus, fiber optic cable has pulling specifications that are up to 10 times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper, advancements in connectors are making termination easier. In addition, fiber is actually easier to test than copper cable.

Migration—The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.

Standards—TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). An addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet (10-GbE) standard.

Costs—The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.

Types of fiber cable and standards.

Multimode, 50- and 62.5-micron cable—Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be used for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable—Single-mode cable has a small 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber. collapse

Black Box Explains...Selecting fiber line drivers.

When choosing a fiber driver, you should make a power budget, calculate the speed and distance of your cable run, and know the interface requirements of all your devices.

Many of... more/see it nowour fiber drivers are for single-mode fiber optic cable. Compared to multimode fiber, single-mode delivers up to 50 times more distance. And single-mode at full-duplex enables up to two times the data throughput of multimode fiber. collapse

Black Box Explains...Straight-pinned and crossover cable.

Straight-pinned cable has the most common type of pinning. The send and receive pairs are wired straight-through on either end of the cable.

Crossover cable is generally used for peer-to-peer connections.... more/see it nowThe send and receive pairs are crossed between Connector A to Connector B on either end of the cable. collapse

Black Box Explains...SCSI-1, SCSI-2, SCSI-3, and SCSI-5.

There are standards…and there are standards applied in real-world applications. This Black Box Explains illustrates how SCSI is interpreted by many SCSI manufacturers. Think of these as common SCSI connector... more/see it nowtypes, not as firm SCSI specifications. Notice, for instance, there’s a SCSI-5, which isn’t listed among the other approved and proposed specifications. However, for advanced SCSI multiport applications, SCSI-5 is often the connector of choice.

Supports transfer rates up to 5 MBps and seven SCSI devices on an 8-bit bus. The most common connector is the Centronics® 50 or a DB50. A Micro Ribbon 50 is also used for internal connections. SCSI-1 equipment, such as controllers, can also have Burndy 60 or 68 connectors.

SCSI-2 introduced optional 16- and 32-bit buses called “Wide SCSI.“ Transfer rate is normally 10 MBps but SCSI-2 can go up to 40 MBps with Wide and Fast SCSI. SCSI-2 usually features a Micro D 50-pin connector with thumbclips. It’s also known as Mini 50 or Micro DB50. A Micro Ribbon 60 connector may also be used for internal connections.

Found in many high-end systems, SCSI-3 commonly uses a Micro D 68-pin connector with thumbscrews. It’s also known as Mini 68. The most common bus width is 16 bits with transfer rates of 20 MBps.

SCSI-5 is also called a Very High-Density Connector Interface (VHDCI) or 0.8-mm connector. It’s similar to the SCSI-3 MD68 connector in that it has 68 pins, but it has a much smaller footprint. SCSI-5 is designed for SCSI-5, next-generation SCSI connections. Manufacturers are integrating this 0.8-mm design into controller cards. It’s also the connector of choice for advanced SCSI multiport applications. Up to four channels can be accommodated in one card slot. Connections are easier where space is limited. collapse

Black Box Explains...DIN rails.

A DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails.... more/see it nowThese devices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35-mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse

Black Box Explains...Layer 2, 3, and 4 switches.

...more/see it now
OSI Layer Physical
7-Application Applicaton Software

LAN-Compatible Software
E-Mail, Diagnostics, Word Processing, Database

Network Applications
6-Presentation Data-
Conversion Utilities
Vendor-Specific Network Shells and Gateway™ Workstation Software
5-Session Network Operating System SPX NetBIOS DECnet™ TCP/IP AppleTalk®
4-Transport Novell® NetWare® IPX™ PC LAN LAN Mgr DECnet PC/TCP® VINES™ NFS TOPS® Apple
3-Network Control
2-Data Link Network E A TR P TR E TR E E E P E P
1-Physical E=Ethernet; TR=Token Ring; A=ARCNET®; P=PhoneNET®

With the rapid development of computer networks over the last decade, high-end switching has become one of the most important functions on a network for moving data efficiently and quickly from one place to another.

Here’s how a switch works: As data passes through the switch, it examines addressing information attached to each data packet. From this information, the switch determines the packet’s destination on the network. It then creates a virtual link to the destination and sends the packet there.

The efficiency and speed of a switch depends on its algorithms, its switching fabric, and its processor. Its complexity is determined by the layer at which the switch operates in the OSI (Open Systems Interconnection) Reference Model (see above).

OSI is a layered network design framework that establishes a standard so that devices from different vendors work together. Network addresses are based on this OSI Model and are hierarchical. The more details that are included, the more specific the address becomes and the easier it is to find.

The Layer at which the switch operates is determined by how much addressing detail the switch reads as data passes through.

Switches can also be considered low end or high end. A low-end switch operates in Layer 2 of the OSI Model and can also operate in a combination of Layers 2 and 3. High-end switches operate in Layer 3, Layer 4, or a combination of the two.

Layer 2 Switches (The Data-Link Layer)

Layer 2 switches operate using physical network addresses. Physical addresses, also known as link-layer, hardware, or MAC-layer addresses, identify individual devices. Most hardware devices are permanently assigned this number during the manufacturing process.

Switches operating at Layer 2 are very fast because they’re just sorting physical addresses, but they usually aren’t very smart—that is, they don’t look at the data packet very closely to learn anything more about where it’s headed.

Layer 3 Switches (The Network Layer)

Layer 3 switches use network or IP addresses that identify locations on the network. They read network addresses more closely than Layer 2 switches—they identify network locations as well as the physical device. A location can be a LAN workstation, a location in a computer’s memory, or even a different packet of data traveling through a network.

Switches operating at Layer 3 are smarter than Layer 2 devices and incorporate routing functions to actively calculate the best way to send a packet to its destination. But although they’re smarter, they may not be as fast if their algorithms, fabric, and processor don’t support high speeds.

Layer 4 Switches (The Transport Layer)

Layer 4 of the OSI Model coordinates communications between systems. Layer 4 switches are capable of identifying which application protocols (HTTP, SNTP, FTP, and so forth) are included with each packet, and they use this information to hand off the packet to the appropriate higher-layer software. Layer 4 switches make packet-forwarding decisions based not only on the MAC address and IP address, but also on the application to which a packet belongs.

Because Layer 4 devices enable you to establish priorities for network traffic based on application, you can assign a high priority to packets belonging to vital in-house applications such as Peoplesoft, with different forwarding rules for low-priority packets such as generic HTTP-based Internet traffic.

Layer 4 switches also provide an effective wire-speed security shield for your network because any company- or industry-specific protocols can be confined to only authorized switched ports or users. This security feature is often reinforced with traffic filtering and forwarding features.


Black Box Explains...10-GbE, CAT6A, and ANEXT.

The IEEE released the 802.3an 10GBASE-T standard in June 2006. This standard specifies 10-Gbps data transmission over four-pair copper cabling. 10-Gigabit Ethernet (10-GbE) transmission includes up to 37 meters of... more/see it nowCAT6 cable (with installation mitigation techniques), 100 meters of Augmented Category 6 (CAT6A) UTP or F/UTP cable or 100 meters of S/FTP CAT7/Class F cable.

CAT6A is the ANSI/TIA 10-Gigabit Ethernet (10-GbE) over copper standard. Its requirements are covered in ANSI/TIA-568-C.2 (Balanced Twisted-Pair Communications Cabling and Components Standard) published in August 2009. It defines 10-Gigabit data transmission over a 4-connector twisted-pair CAT6A copper cable for a distance of 100 meters.

Category 6A cabling is designed to support next-generation applications, including the transfer of large amounts of data at high speeds, up to 10 Gbps. CAT6A extends electrical specifications to 500 MHz from 250 MHz for CAT6 cabling. CAT6A cables are fully backward compatible with previous categories, including CAT6 and 5e. Category 6A is also designed to support bundled cable installations up to 100 meters and PoE+ low-power implementations. The standard includes the performance parameter, Alien Crosstalk (ANEXT). Because of its higher performance transmission speeds and higher MHz rating, CAT6A cable needs to be tested for external noise outside the cable, which wasn’t a concern with previous cabling categories. CAT6A UTP also has a much larger diameter than previous cables.

Alien crosstalk (ANEXT) is a critical and unique measurement in 10-GbE systems. Crosstalk, measured in 10/100/1000BASE-T systems, is the mixing of signals between wire pairs within a cable. Alien Crosstalk, in 10-GbE systems, is the measurement of the unwanted signal coupling between wire pairs in different and adjacent cables or from one balanced twisted-pair component, channel, or permanent link to another.

The amount of ANEXT depends on a number of factors, including the type of cable, cable jacket, cable length, cable twist density, proximity of adjacent cables, and connectors, and EMI. Patch panels and connecting hardware are also affected by ANEXT.

With Alien Crosstalk, the affected cable is called the victim cable. The surrounding cables are the disturber cables.

There are a number of ways to mitigate the effects of ANEXT in CAT6A runs. According to the standards, ANEXT can be improved by laying CAT6A UTP cable loosely in pathways and raceways with space between the cables. This contrasts to the tightly bundled runs of CAT6/5e cable that we are used to. The tight bundles present a worst-case scenario of six cables around one, thus the center cable would be adversely affected by ANEXT. CAT6A UTP cable needs to be tested for ANEXT. This is a complex and time-consuming process in which all possible wire-pair combinations need to be tested for ANEXT and far-end ANEXT. It can take 50 minutes to test one link in a bundle of 24 CAT 6A UTP cables.

To virtually eliminate the problem of ANEXT, you can use CAT6A F/UTP cable. The F indicates an outer foil shield encasing four unshielded twisted pairs. This cable is also a good choice when security is an issue because it doesn’t emit signals. In addition, CAT6A F/UTP cable works well in noisy environments with a lot of EMI/RFI.

Installation of CAT6A F/UTP is simpler, too, because the cable features a smaller outside diameter than CAT6A UTP. Its construction makes it easier to pull and more resilient. The cable also has a smaller diameter so you can run more cables in a conduit or pathway, and have greater patch panel port density.

For more information, see the CAT6A F/UTP vs. UTP: What You Need to Know white paper in the Resources section at blackbox.com. collapse

Black Box Explains...The MPO connector.

MPO stands for multifiber push-on connector. It is a connector for multifiber ribbon cable that generally contains 6, 8, 12, or 24 fibers. It is defined by IEC-61754-7 and EIA/TIA-604-5-D,... more/see it nowalso known as FOCIS 5. The MPO connector, combined with lightweight ribbon cable, represents a huge technological advance over traditional multifiber cables. It’s lighter, more compact, easier to install, and less expensive.

A single MPO connector replaces up to 24 standard connectors. This very high density means lower space requirements and reduced costs for your installation. Traditional, tight-buffered multifiber cable needs to have each fiber individually terminated by a skilled technician. But MPO fiber optic cable, which carries multiple fibers, comes preterminated. Just plug it in and you’re ready to go.BR>
MPO connectors feature an intuitive push-pull latching sleeve mechanism with an audible click upon connection and are easy to use. The MPO connector is similar to the MT-RJ connector. The MPO’s ferrule surface of 2.45 x 6.40 mm is slightly bigger than the MT-RJ’s, and the latching mechanism works with a sliding sleeve latch rather than a push-in latch.

The MPO connector can be either male or female. You can tell the male connector by the two alignment pins protruding from the end of the ferrule. The MPO ferrule is generally flat for multimode applications and angled for single-mode applications.

MPO connectors are also commonly called MTP® connectors, which is a registered trademark of US Conec. The MTP connector is an MPO connector collapse

Results 151-160 of 214 << < 16 17 18 19 20 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.

Black Box 1-877-877-2269 Black Box Network Services