Loading


Content Type (x) > Black Box Explains (x)

Results 151-160 of 205 << < 16 17 18 19 20 > >> 

Black Box Explains... Crosstalk.

One of the most important cable measurements is Near-End Crosstalk (NEXT). It’s signal interference from one pair that adversely affects another pair on the same end.

Not only can crosstalk... more/see it nowoccur between adjacent wire pairs (“pair-to-pair NEXT“), but all other pairs in a UTP cable can also contribute their own levels of both near-end and far-end crosstalk, multiplying the adverse effects of this interference onto a transmitting or receiving wire pair.

Because such compounded levels of interference can prove crippling in high-speed networks, some cable manufacturers have begun listing Power Sum NEXT (PS-NEXT), FEXT, ELFEXT, and PS-ELFEXT ratings for their CAT5e and CAT6 cables. Here are explanations of the different types of measurements:

NEXT measures an unwanted signal transmitted from one pair to another on the near end.

PS-NEXT (Power Sum crosstalk) is a more rigorous crosstalk measurement that includes the total sum of all interference that can possibly occur between one pair and all the adjacent pairs in the same cable sheath. It measures the unwanted signals from multiple pairs at the near end onto another pair at the near end.

FEXT (Far-End crosstalk) measures an unwanted signal from a pair transmitting on the near end onto a pair at the far end. This measurement takes full-duplex operation into account where signals are generated simultaneously on both ends.

ELFEXT (Equal-Level Far-End Crosstalk) measures the FEXT in relation to the received signal level measured on that same pair. It basically measures interference without the effects of attenuation—the equal level.

PS-ELFEXT (Power Sum Equal-Level Far-End Crosstalk), an increasingly common measurement, measures the total sum of all intereference from pairs on the far end to a pair on the near end without the effects of attenuation. collapse


Black Box Explains... Manual switch chassis styles.

There are five manual switch chassis styles: three for standalone switches (Styles A, B, and C) and two for rackmount switches (Styles D and E). Below are the specifications for... more/see it noweach style.

Standalone Switches

Chassis Style A
Size — 2.5"H x 6"W x 6.3"D (6.4 x 15.2 x 16 cm
Weight — 1.5 lb. (0.7 kg)
Chassis Style B
Size — 3.5"H x 6"W x 6.3"D (8.9 x 15.2 x 16 cm)
Weight — 1.5 lb. (0.7 kg)
Chassis Style C
Size — 3.5"H x 17"W x 5.9"D (8.9 x 43.2 x 15 cm)
Weight — 8.4 lb. (3.8 kg)

Rackmount Switches

Chassis Style D (Mini Chassis)
Size — 3.5"H x 19"W x 5.9"D (8.9 x 48.3 x 15 cm)
Chassis Style E (Standard Chassis)
Size — 7"H x 19"W x 5.9"D (17.8 x 48.3 x 15 cm) collapse


Black Box Explains... Guidelines for choosing fiber optic cable.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. It’s favored for applications that... more/see it nowneed high bandwidth, long distances, and complete immunity to electrical interference.

It’s ideal for high-data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances.

Fiber offers the following advantages:

Greater bandwidth—Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase.

Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber and many CATV companies are converting to fiber.

Low attenuation and greater distance—Because the fiber optic signal is made of light, very little signal loss occurs during transmission, and data can move at higher speeds and greater distances. Fiber does not have the 100-meter (328-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters (984.2 ft.) to 40 kilometers (24.8 mi.), depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.

Security—Your data is safe with fiber cable. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.

Immunity and reliability—Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The core is made of glass, which is an insulator, so no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.

Design—Fiber is lightweight, thin, and more durable than copper cable. Plus, fiber optic cable has pulling specifications that are up to 10 times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper, advancements in connectors are making termination easier. In addition, fiber is actually easier to test than copper cable.

Migration—The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.

Standards—TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). An addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet (10-GbE) standard.

Costs—The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.

Types of fiber cable and standards.

Multimode, 50- and 62.5-micron cable—Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be used for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable—Single-mode cable has a small 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber. collapse


Black Box Explains...Quick disconnnects.

A quick disconnect enables you to disconnect your headset without disconnecting your call or taking off your headset. This option is expecially convenient when you need to leave your desk... more/see it nowand keep your caller on the line. When you return to your desk, all you need to do is reconnect the plug and you’re talking again. The quick disconnect works well for call centers and busy offices where files aren’t at your desk or when you need to speak to a supervisor. collapse


Using optical break locators and OTDRs.

An optical time-domain reflectometer, or OTDR, is an instrument used to analyze optical fiber. It sends a series of light pulses into the fiber under test and analyzes the light... more/see it nowthat is scattered and reflected back. These reflections are caused by faults such as breaks, splices, connectors, and adapters along the length of the fiber. The OTDR is able to estimate the overall length, attenuation or loss, and distance to faults. It’s also able to “see” past many of these “events” and display the results. The user is then able to see all the events along the length of the fiber run.

However, OTDRs do have a weakness?—?a blind spot that prevents them from seeing faults in the beginning of the fiber cable under test. To compensate for this, fiber launch boxes are used. Launch boxes come in predetermined lengths and connector types. These lengths of fiber enable you to compensate for this blind spot and analyze the length of fiber without missing any faults that may be in the first 10–30 meters of the cable.

An optical break locator, or OBL, is a simplified version of an OTDR. It’s able to detect high-loss events in the fiber such as breaks and determine the distance to the break. OBLs are much simpler to use than an OTDR and require no special training. However, there are limitations. They can only see to the first fault or event and do not display information on the portion of fiber after this event. collapse


Black Box Explains... Fan-out kits.

Furcating is the process of adding protective tubing to each fiber within a loose-tube cable. It can be a headache-inducing task if you don’t have the right tools. If you... more/see it nowbend the cable or buffer tubes past their recommended bend radius, or if you allow them to kink, you’ll end up with substandard cable connections and splices that can break down over time. And, if the cable is outdoors, it can become exposed to the elements. The end result: a damaged cable without optimal transmission performance.

That’s why a fan-out kit is an absolute must during furcation. These kits enable you to branch out the fragile fiber strands from a buffer tube into protective tubing so you can add a connector. And, you can do it without using splicing hardware, trays, and pigtails.

To separate the fibers, use the kit’s fan-out assembly, which is color-coded to match the fiber color scheme. The assembly protects the cable’s bend radius. It also eliminates excessive strain on the fibers by isolating them from tensile forces.

Several types of fan-out kits are available for both indoor and outdoor cross-connects. The outdoor kits include components that compensate for wider temperature fluctuations. Some kits are used to terminate loose-tube cables with 6 or 12 fibers per buffer tube. Others enable you to furcate and terminate more than 200 loose-tube cable fibers, sealing the cable sheath and providing a moisture barrier at the point of termination. These kits require no additional hardware.

Although it’s recommended that you terminate loose-tube cable at a patch panel, that might not always be possible. For this, there are “spider“ type fan-out kits, which affix a stronger tubing to the bare fiber. The tubing is typically multilayered, consisting of a FEP inner tube that holds the individual fiber, an aramid yarn strength member, and an outer protective PVC jacket. Once you strip back the cable jacket, you thread the fibers into the fan-out inserts. collapse


Black Box Explains...PoE phantom power.

10BASE-T and 100BASE-TX Ethernet use only two pairs of wire in 4-pair CAT5/CAT5e/CAT6 cable, leaving the other two pairs free to transmit power for Power over Ethernet (PoE) applications. However,... more/see it nowGigabit Ethernet or 1000BASE-T uses all four pairs of wires, leaving no pairs free for power. So how can PoE work over Gigabit Ethernet?

The answer is through the use of phantom power—power sent over the same wire pairs used for data. When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

10- and 100-Mbps PoE may also use phantom power. The 802.3af PoE standard for use with 10BASE-T and 100BASE-TX defines two methods of power transmission. In one method, called Alternative A, power and data are sent over the same pair. In the other method, called Alternative B, two wire pairs are used to transmit data, and the remaining two pairs are used for power. That there are two different PoE power-transmission schemes isn’t obvious to the casual user because PoE Powered Devices (PDs) are made to accept power in either format. collapse


Black Box Explains...50-micron vs. 62.5-micron fiber optic cable.

The background
As today’s networks expand, the demand for more bandwidth and greater distances increases. Gigabit Ethernet and the emerging 10 Gigabit Ethernet are becoming the applications of choice for current... more/see it nowand future networking needs. Thus, there is a renewed interest in 50-micron fiber optic cable.

First used in 1976, 50-micron cable has not experienced the widespread use in North America that 62.5-micron cable has.

To support campus backbones and horizontal runs over 10-Mbps Ethernet, 62.5 fiber, introduced in 1986, was and still is the predominant fiber optic cable because it offers high bandwidth and long distance.

One reason 50-micron cable did not gain widespread use was because of the light source. Both 62.5 and 50-micron fiber cable can use either LED or laser light sources. But in the 1980s and 1990s, LED light sources were common. Since 50-micron cable has a smaller aperture, the lower power of the LED light source caused a reduction in the power budget compared to 62.5-micron cable—thus, the migration to 62.5-micron cable. At that time, laser light sources were not highly developed and were rarely used with 50-micron cable—mostly in research and technological applications.

Common ground
The cables share many characteristics. Although 50-micron fiber cable features a smaller core, which is the light-carrying portion of the fiber, both 50- and 62.5-micron cable use the same glass cladding diameter of 125 microns. Because they have the same outer diameter, they’re equally strong and are handled in the same way. In addition, both types of cable are included in the TIA/EIA 568-B.3 standards for structured cabling and connectivity.

As with 62.5-micron cable, you can use 50-micron fiber in all types of applications: Ethernet, FDDI, 155-Mbps ATM, Token Ring, Fast Ethernet, and Gigabit Ethernet. It is recommended for all premise applications: backbone, horizontal, and intrabuilding connections, and it should be considered especially for any new construction and installations. IT managers looking at the possibility of 10 Gigabit Ethernet and future scalability will get what they need with 50-micron cable.

Gaining ground
The big difference between 50-micron and 62.5-micron cable is in bandwidth. The smaller 50-micron core provides a higher 850-nm bandwidth, making it ideal for inter/intrabuilding connections. 50-micron cable features three times the bandwidth of standard 62.5-micron cable. At 850-nm, 50-micron cable is rated at 500 MHz/km over 500 meters versus 160 MHz/km for 62.5-micron cable over 220 meters.

Fiber Type: 62.5/125 µm
Minimum Bandwidth (MHz-km): 160/500
Distance at 850 nm: 220 m
Distance at 1310 nm: 500 m

Fiber Type: 50/125 µm
Minimum Bandwidth (MHz-km): 500/500
Distance at 850 nm: 500 m
Distance at 1310 nm: 500 m

As we move towards Gigabit Ethernet, the 850-nm wavelength is gaining importance along with the development of improved laser technology. Today, a lower-cost 850-nm laser, the Vertical-Cavity Surface-Emitting Laser (VCSEL), is becoming more available for networking. This is particularly important because Gigabit Ethernet specifies a laser light source.

Other differences between the two types of cable include distance and speed. The bandwidth an application needs depends on the data transmission rate. Usually, data rates are inversely proportional to distance. As the data rate (MHz) goes up, the distance that rate can be sustained goes down. So a higher fiber bandwidth enables you to transmit at a faster rate or for longer distances. In short, 50-micron cable provides longer link lengths and/or higher speeds in the 850-nm wavelength. For example, the proposed link length for 50-micron cable is 500 meters in contrast with 220 meters for 62.5-micron cable.

Migration
Standards now exist that cover the migration of 10-Mbps to 100-Mbps or 1 Gigabit Ethernet at the 850-nm wavelength. The most logical solution for upgrades lies in the connectivity hardware. The easiest way to connect the two types of fiber in a network is through a switch or other networking “box.“ It is not recommended to connect the two types of fiber directly. collapse


S/PDIF

S/PDIF (Sony/Philips Digital Interface Format) is a type of digital audio transfer file format developed primarily by Sony and Philips. It enables the transfer of digital audio without converting it... more/see it nowto and from analog, which can degrade the signal.

S/PDIF is typically used to connect consumer audio equipment over short distances. The connector is found on equipment such as a DAT (Digital Audio Tape) device, home theater amplifiers, etc. S/PDIF is based on the professional AES3 interconnect standard.

S/PDIF signals are carried over two types of cables. The first is a 75-ohm coaxial cable with orange RCA connectors. The second is a fiber cable with TOSLINK connectors. collapse


Black Box Explains… Category 7/Class F.


Category 7/Class F (ISO/IEC 11801:2002) specifies a frequency range of 1–600 MHz over 100 meters of fully shielded twisted-pair cabling. It encompasses four individually shielded pairs inside an overall shield,... more/see it nowcalled Shielded/Foiled Twisted Pair (S/FTP) or Foiled/ Foiled Twisted Pair (F/FTP). There is a pending class Fa, based on the use of S/FTP cable to 1000 MHz. It can support 10GBASE-T transmissions.

With both types of cable, each twisted pair is enclosed in foil. In S/FTP cable, all four pairs are encased in an overall metal braid. In F/FTP, the four pairs are encased in foil.

Category 7/Class F cable can be terminated with two interface designs as specified in IEC 6063-7-7 and IEC 61076-3-104. One is an RJ-45 compatible GG-45 connector. The other is the more common TERA connector, which was launched in 1999.

Category 7/Class F is backwards compatible with traditional CAT6 and CAT5 cable, but it has far more stringent specifications for crosstalk and system noise. The fully shielded cable virtually eliminates crosstalk between the pairs. In addition, the cable is noise resistant, which makes the Category 7/Class F systems ideal for high EMI areas, such as industrial and medical imaging facilities.
Category 7/Class F cable can also increase security by preventing the emission of data signals from the cable to nearby areas. collapse

Results 151-160 of 205 << < 16 17 18 19 20 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services