Loading


Content Type (x) > Black Box Explains (x)

Results 141-150 of 208 << < 11 12 13 14 15 > >> 

Black Box Explains…VoIP

Voice over Internet Protocol (VoIP) is a recently developed, cost-saving alternative to traditional telephone service that enables voice data to be transported over IP networks, like the Internet, instead of... more/see it nowthe public switched telephone network (PSTN) or a cellular network.

VoIP, which operates strictly over IP networks, can connect to other VoIP nodes or traditional phone lines. The IP network used may be the Internet or a private network.

In either instance, the actual data-transport portion of this network can still be made up of the full gamut of network services: high-speed leased lines, Frame Relay, ATM, DSL, copper, fiber, wireless, satellite, and microwave signals. VoIP simply digitizes voice data and adds it to other information traveling along the same network.

With this flexible technology, a phone call can be placed between two PCs, between a PC and a standard telephone, between a PC and an IP phone, between an IP phone and a standard telephone, or between two IP phones. It will take a long time for the PSTN to support this technology seamlessly, but this seems to be the direction in which phone systems are headed.

Benefits of VoIP
Because VoIP is inexpensive, has a worldwide reach, and operates on a few simple principles, it’s exploded in popularity in recent years—especially among both small and large businesses that incur significant long-distance telephone expenses.

Savings
Without question, the primary benefit of a VoIP system is decreasing or eliminating long-distance telephone charges. Organizations with a high volume of long-distance voice traffic stand to save quite a lot of money by implementing a VoIP system. However, this factor alone may not warrant a full commitment to VoIP for some companies.

Setup fees for VoIP are usually quite low so your organization can generally start saving money after only a month or two of service. And with the wide variety of VoIP products and services on the market, it’s easier than ever to set up a VoIP phone system over your network.

Convenience
VoIP can be set up in a way that enables you to use phone numbers in exactly the same way as you did before VoIP. Most of the services you get with traditional phone service—Voice Mail, Call Waiting, and Call Routing, for instance—are also available with VoIP.

VoIP doesn’t interfere with other network services either, so you can surf the Web while making a VoIP call.

Portability
VoIP doesn’t tie you to one phone or to a single location. Anywhere you find high-speed reliable Internet access, you can use VoIP. Your phone number stays the same wherever you are—office, home, hotel, or even traveling overseas.

Standards
Although the ITU standards for VoIP have evolved significantly in the last few years, VoIP is still suffering from a lack of generally accepted interoperability standards.

H.323, a standard for real-time audio, video, and data communications across IP-based networks (including the Internet), is almost universally accepted as the primary standard for VoIP call setup and signaling. It’s actually a collection of standards that works together for sending multimedia and data over networks that don’t provide guaranteed Quality of Service (QoS).

The H.323 standard includes:
- Real-Time Transport Protocol (RTP) specifies end-to-end network transport functions for applications transmitting real-time data such as video. RTP provides services like payload type identification, sequence numbering, time stamping, and delivery monitoring to real-time applications. Plus, it works with RTCP.
- Real-time Transport Control Protocol (RTCP) works with RTP to provide a feedback mechanism, providing QoS status and control information to the streaming server.
- Registration, Admission, Status (RAS) is a gateway protocol that manages functions such as signaling, registration, admissions, bandwidth changes, status, and disengage procedures.
- Q.931 manages call setup and termination.
- H.245 negotiates channel usage and capabilities.
- H.235 provides security and authentication.

As VoIP product manufacturers began conducting interoperability tests for more complex operations, they recognized that they needed a simpler and more adaptable standard for call handling and signaling protocol.

To this end, the IETF developed the Session Initiation Protocol (SIP). SIP is built with less computer code than H.323 is, so it’s less cumbersome. Because SIP is similar in nature to HTML—it uses ASCII text for configuration—users can adapt it more easily for specific VoIP systems. In contrast, modifying H.323 for VoIP applications requires a knowledgeable computer programmer.

Both H.323 and SIP are considered “thick clients,” where intelligence is maintained in the end devices such as IP telephones. In this respect, H.323 has a head start, although most VoIP systems today support both H.323 and SIP.

Providers
Despite the fact that VoIP standards are still developing, providers are already flooding the market with products and services while forming partnerships and matching expertise to strengthen their position in this new market. The biggest of these players and alliances—the ones who have the size and experience to grasp technical issues and quickly build infrastructures over which to offer VoIP services—are able to keep up with (and often influence) the continual changes in this market and keep rolling out new services.

Components
A VoIP system depends on devices that connect your traditional phone or phone system to an IP network. Components that you’ll see in a VoIP system include:
- End-user devices
- Gateways or gatekeepers
- IPBXs
- IP Networks

End-user devices are usually VoIP telephones or PCs running VoIP software. End-user devices have their own IP address and make a direct connection to the IP network.

A gateway is a device that converts circuit-switched analog voice calls from a traditional PBX into VoIP packets and transmits them over an IP network either to another gateway or directly to an end-user device.

A gateway can have additional features such as voice compression, echo cancellation, and packet prioritization.

Because VoIP-enabled end-user devices can communicate directly with each other over an IP network, a gateway is not a required component of a VoIP system as long as the VoIP devices are connected directly to the IP network.

An IPBX is a PBX with a built-in gateway. IPBX systems are equipped for hundreds of telephone ports, with WAN support for trunk connections to the PSTN, and with high-speed IP WAN links. In addition to VoIP features, these systems usually include other features typical of traditional PBX systems such as music on hold, auto-attendant, and call management. Often, they include Ethernet ports to support VoIP telephones.

VoIP can be set up with or without a connection to standard PSTN phone service. You can, of course, place calls over the Internet directly from your PC or IP phone to another VoIP-enabled device. But what makes VoIP so versatile is that, through the use of a gateway service, it can also be used to call the numbers of phones connected to standard land-line or cellular phone services. They can also receive calls from standard telephones.

Not all fun and free calls
There are still things to consider when you’re deciding whether or not to invest in VoIP.

Regulation vagaries
Much of the government regulation of VoIP is still being worked out. The U.S. government hasn’t decided whether VoIP is going to be regulated as phone service or whether to tax it. VoIP isn’t available worldwide because some governments fear the loss of tax revenue or control.

Compatibility
Although older VoIP equipment may still have some compatibility issues, current VoIP products from different vendors generally work together.

Cost
For all the popular talk about VoIP being free, it isn’t truly free. Any VoIP system has costs associated with its implementation—equipment, high-speed Internet access, and gateway service. So, although it’s inexpensive, it’s a long way from being free. For organizations with a high volume of long-distance calls, especially to international locations, VoIP almost always pays for itself quickly. However, private users or organizations with a low volume of long-distance calls primarily within the U.S., may find that a standard service is actually more economical in the short- to mid-term.

QoS
VoIP depends on having a fast, reliable network to operate. A fast network connection with guaranteed bandwidth is not a problem in a corporate intranet where you have complete control over the network. However, if you’re using the Internet for VoIP, you’re using a public network that may be subject to slowdowns that cause drop-outs and distortion. You may find that your high-speed Internet connection is faster than the actual Internet and that the quality of your connection is generally unacceptable or is unacceptable at times when Internet usage is high.

There are four common network issues that can cause problems with a VoIP system:
- Latency is a delay in data transmission. With VoIP, this usually results in people speaking over one another because neither can tell when the other is finished talking.
- Loss. Losing a small percentage of voice transmission doesn’t affect VoIP, but too much (more than 1%) compromises the quality of the call.
- Jitter—is common to congested networks with bursty traffic. Jitter can be managed to some degree with software buffers.
- Sequence errors—or changes in the order of packets when they’re recompiled at the receiving station, degrades sound quality.

Emergency services
If you subscribe to a VoIP gateway service that enables you to use your VoIP phone like a regular phone, be aware that you may not be able to call 911 for emergencies. If 911 service is important to you because you don’t have an alternative way to call 911, shop for a VoIP provider who does provide this service.

Consider, too, that VoIP needs both working Internet access and power to work. If you lose your Internet service, your phone goes, too. And, unlike regular phone service that can keep basic telephones working when the power goes out, VoIP needs power—if you lose power, you lose your phone.

Moving forward
Before VoIP technology becomes truly universal, the current worldwide PSTN will have to migrate to a packet-based IP equivalent. Industry inertia alone dictates this will not occur instantly. The current worldwide PSTN system has grown to what it is over a period of 125 years. Given the sheer complexity of the existing PSTN, the migration to an IP packet network will probably occur during several decades.

As migration from the PSTN to IP-based networks proceeds, businesses and home users will gradually discover reasons of their own to implement VoIP. It won’t happen right away, but we predict that VoIP will become a big part of telecommunications in the not-so-distant future.

Although it’s not quite as convenient as conventional phone service, VoIP can offer serious savings—particularly if you now regularly pay for multiple overseas phone calls. Keep in mind though, VoIP isn’t a one-size-fits-all solution. But with a little planning, VoIP could spell savings for you! collapse


Black Box Explains... Bridges

If you work with legacy networks, you have doubtlessly encountered bridges. Bridges perform the same function as today’s switches in that they connect multiple network segments to create one homogenous... more/see it nownetwork, while keeping each segment isolated from the others.

Bridges operate on MAC-layer addresses and are protocol independent, so they transfer data between workstations without understanding the protocol. Since they don’t have to understand the protocol, they require little or no configuration.

Once you connect the bridge to the network, it automatically learns the addresses of all connected nodes and then creates an internal address table of this information.

When the bridge sees a packet, it checks the packet’s destination address against its internal list. If the address indicates the packet needs to be forwarded, the bridge passes the packet to the appropriate segment. If a bridge doesn’t know where a packet belongs—for example, when a station is first powered on—it passes on the packet.

Bridges can also distinguish between local data and remote data, so data traveling from one workstation to another in the same network doesn’t have to cross the bridge.

Although they are no longer in general use, Black Box stocks bridges for use as replacement parts in legacy networks. Replacing bridges with bridges rather than switches is often preferable because bridges are generally available with the BNC and AUI interfaces often found in older networks. Also, some bridges are able to link to other protocols such as RS-530 and X.21, enabling you to use these media to establish Ethernet network connections. collapse


Black Box Explains...NEMA ratings for enclosures.

The National Electrical Manufacturers’ Association (NEMA) issues guidelines and ratings for an enclosure’s level of protection against contaminants that might come in contact with its enclosed equipment.

There are many numerical... more/see it nowNEMA designations; we’ll discuss NEMA enclosures relevant to our on-line catalog: NEMA 3, NEMA 3R, NEMA 4, NEMA 4X, and NEMA 12.

NEMA 3 enclosures, designed for both indoor and outdoor use, provide protection against falling dirt, windblown dust, rain, sleet, and snow, as well as ice formation.

The NEMA 3R rating is identical to NEMA 3 except that it doesn’t specify protection against windblown dust.

NEMA 4 and 4X enclosures, also designed for indoor and outdoor use, protect against windblown dust and rain, splashing and hose-directed water, and ice formation. NEMA 4X goes further than NEMA 4, specifying that the enclosure will also protect against corrosion caused by the elements.

NEMA 12 enclosures are constructed for indoor use only and are designed to provide protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing noncorrosive liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 designation. collapse


Black Box Explains…SFP compatibility.

Standards for SFP fiber optic media are published in the SFP Multi-Source Agreement, which specifies size, connectors, and signaling for SFPs, with the idea that all SFPs are compatible with... more/see it nowdevices that have appropriate SFP slots. These standards, which also extend to SFP+ and XFP transceivers, enable users to mix and match components from different vendors to meet their own particular requirements.

However, some major manufacturers, notably Cisco®, HP®, and 3Com®, sell network devices with SFP slots that lock out transceivers from other vendors. Because the price of SFPs—especially Gigabit SFPs and 10GBASE SFP+ and XFP transceivers—can add significantly to the price of a switch, this lock-out scheme raises hardware costs and limits transceiver choices.

Many vendors don’t advertise that SFP slots on their devices don’t accept standard SFPs from other vendors. This can lead to unpleasant surprises when a device simply refuses to communicate with an SFP.

Another game that some vendors play is to build devices that accept open-standard SFPs, but refuse to support those devices when SFPs from another vendor are used with them.

The only way around this “lock-in” practice is to only buy network devices that accept standard SFPs from all vendors and to buy from vendors that support their devices no matter whose SFPs are used with them. Questions? Call our FREE Tech Support at 724-746-5500. collapse


Black Box Explains...CAT5: When more isn’t always better.

In data communications applications, using products that exceed required capacities is usually not a problem. For example, if a 28.8K modem is required, a 33.6K or 56K model will work... more/see it nowjust fine.

But sometimes, more isn’t better. Take KVM extenders designed to expect CAT5 and only CAT5 cable. You’d expect that Category 3 cable wouldn’t be effective with these products, and you would be right.

But you may also assume that if Category 5 cable works fine, Category 5e, Category 6, and other higher-capacity cables would work even better. Unfortunately, this isn’t the case, and here’s why:

KVM extenders from many manufacturers, including ServSwitch CAT5 KVM Extenders, are designed specifically for the Category 5 specs defined by the TIA/EIA standard. Higher-level cables, such as Category 5e, have different characteristics and specifications. Although differences—specifically twist ratios—might seem small, they can have a negative impact on these extenders, which are expecting a true Category 5 transmission.

So with ServSwitch CAT5 KVM Extenders, you can think big with CAT5—just don’t think bigger. collapse


Black Box Explains... Video extenders with built-in skew compensation.

To ensure the best video resolution, it’s important to match your video extension device with a compatible grade of cable. Some multimedia extenders are not designed to transmit video across... more/see it nowcable that’s higher than CAT5. In fact, with these extenders, the higher-grade cable may actually degrade video.

The problem is with the cable twists of CAT5e and CAT6 cables. To reduce signaling crosstalk, these higher-grade cables have tighter twists—and more of them—than CAT5 cable does. For this reason, the wire distance that an electrical signal has to travel is different for each pair. This doesn’t normally cause a problem with data, but if you’re sending higher-resolution analog video signals across long cables, you may see color separation caused by the video signals arriving at different times.

To avoid this, you could use only the lower-grade cable with the extenders. But what if you already have CAT5e or higher cable installed in your building, or you simply want the latest and greatest copper wiring? Order an extender receiver that features built-in skew compensation so it can work properly with higher cable grades at longer distances. collapse


Black Box Explains...The fully accessorized rack.

After you choose your rack, consider how you’ll set it up and what accessories you might need.

Your rack may need to be secured. A typical rack has about a... more/see it now15"-deep base, providing some stability, but not enough to prevent the rack from tipping if heavy objects are mounted on it. To solve this problem, most rack bases can be bolted to the floor.

You also need to decide how to accommodate standalone equipment, which is not actually rackmounted or bolted to the rack. You can place small devices on a cantilevered shelf such as the RM001, however, you should place heavier items such as monitors on a center-weight shelf such as the RM377.

Small extras, such as Patch Panel Hinge Kits, can make your job easier. These hinges enable you to access the back of a patch panel simply by swinging it out from the rack. They’re particularly useful for racks in hard-to-reach areas.

If you need to mount both 19" and 23" equipment in the same rack, use a 23" rack with 23"-to-19" Rackmount Adapters to fit the 19" devices.

For a neater appearance, you can cover unused spaces in a rack with Filler Panels.

Cable management is also an important consideration. Our Horizontal and Vertical Cable Managers help you to route cables along the sides of racks, between racks, and to the rackmounted equipment. collapse


Cold aisle containment.

Cold aisle containment (CAC) is a cooling method that increases cooling efficiency and reduces energy costs in data centers.

This cooling method relies on the fact that most network equipment... more/see it nowand servers are designed to cool themselves by drawing air in through the front and exhausting it out the rear. To implement cold aisle containment, rows of cabinets or racks are arranged facing each other to form aisles, and cool air is routed between the rows. Equipment takes the cool air in at the front of the cabinet and exhausts it out the back into the room.

To keep cool air from mixing with warm air, row ends are closed off with an air-flow barrier. This barrier can range from makeshift arrangements of plastic strips to doors made expressly for this purpose.

Because cold aisle containment concentrates cool air at the front of equipment where it’s most needed, it’s an exceptionally effective cooling method. Cold aisle containment significantly reduces energy costs, lowering power bills as well as reducing data centers’ carbon footprints. collapse


Black Box Explains...Controlling GPIO interfaces with iCOMPEL.

With the iCOMPEL™, interactivity goes beyond touchscreen support. It also supports general-purpose input/output (GPIO) capabilities. Through an external device with a GPIO interface, the playing of on-screen information can be... more/see it nowtriggered (or halted) by signals originating from device inputs via contact closures. These can be external infrared motion detectors, light sensors, switches, push buttons, building control systems—even external SCADA collection systems.

The possibilities are endless. You can set up a screen to provide emergency notification during crises—based on a signal sent when a secure door is opened or when an environmental condition occurs. Or simply use a screen to welcome visitors walking through your main door. You can even have a screen change from a static display to an interactive touchscreen when someone approaches.

Just connect the external device to the iCOMPEL using our ICOMP-GPIO Adapter, which adapts the USB port on the iCOMPEL to a DB9 (RS-232) port. (NOTE: Older iCOMPEL units include a DB9 port, so the adapter isn’t needed.) This adapted port can be used for sending user-defined RS-232 strings and receiving RS-232 strings. The port also offers four input lines for binary events, such as motion detection, contact closure, or other device signaling. In some cases, you can even use the RS-232 connection to power simple detection devices.

Each RS-232 input item can be included in a playlist and used to generate an Advance To or Change Layout on a user-defined transition of the line. The Advance To or Change Layout commands can be configured to change the media being played by the iCOMPEL.

The iCOMPEL has the ability to control the output state of the RS-232 DTR and RTS lines. The lines are controlled by RS-232 output items, which can appear as items in the iCOMPEL playlist menu. The RS-232 output items can assign the state of one or both RS-232 output lines and optionally a string of characters to be output.

For further details on how to activate touchscreen and contact closure capabilities on an iCOMPEL unit, contact our FREE Tech Support. Our experts can also recommend accessories for motion detection and other GPIO-controlled functions.
collapse


Black Box Explains...Code-operated and matrix switches.

Code-operated and matrix switches from Black Box give you computer-controlled switching for a variety of applications.

Code-operated switches
BLACK BOX® Code-Operated Switches enable one device to control up to 64 connected devices,... more/see it nowdepending on the code-operated switch. For instance, you can use one modem—not eight—to control eight devices. Code-operated switches are ideal for applications that require remote switching for file sharing or monitoring. Use code-operated switches for:
• Remote programming. Call in via remote sites to access servers, logic controllers, or any devices that require programming.
• Diagnostics. From your master control room, you can probe servers and run diagnostics.

Matrix switches
Matrix switches enable more than one device to control other devices. Any port can connect to any port and perform more than one operation at a time independently. The code-operated switches talk to only one slave port at a time.

For instance, if your operation has four computers that need to share two printers and one modem, a matrix switch is what you need to handle the job. Use matrix switches for:
• Industrial applications. You can download instructions remotely to more than one programmable logic controller.
• Data sharing. PCs or industrial devices can be connected—locally or remotely—to other PCs and industrial devices or for file swapping. collapse

Results 141-150 of 208 << < 11 12 13 14 15 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services