Content Type (x) > Black Box Explains (x)

Results 131-140 of 201 << < 11 12 13 14 15 > >> 

Black Box Explains... KVM IP gateways

Just as a gate serves as an entry or exit point to a property, a gateway serves the same purpose in the networking world. It’s the device that acts as... more/see it nowa network entrance or go-between for two or more networks.

There are different types of gateways, depending on the network.

An application gateway converts data or commands from one format to another. A VoIP gateway converts analog voice calls into VoIP packets. An IP gateway is like a media gateway, translating data from one telecommunications device to another.

Gateways often include other features and devices, such as protocol converters, routers, firewalls, encryption, voice compression, etc. Although a gateway is an essential feature of most routers, other devices, such as a PC or server, can also function as a gateway.

A KVMoIP switch contains an IP gateway, which is the pathway the KVM signals use to travel from the IP network to an existing non-IP KVM switch. It converts and directs the KVM signals, giving a user access to and control of an existing non-IP KVM switch over the Internet. collapse

Black Box Explains...Solid vs. stranded cable.

Solid-conductor cable is designed for backbone and horizontal cable runs. Use it for runs between two wiring closets or from the wiring closet to a wallplate. Solid cable shouldn’t be... more/see it nowbent, flexed, or twisted repeatedly. Its attenuation is lower than that of stranded-conductor cable.

Stranded cable is for use in shorter runs between network interface cards (NICs) and wallplates or between concentrators and patch panels, hubs, and other rackmounted equipment. Stranded-conductor cable is much more flexible than solid-core cable. However, attenuation is higher in stranded-conductor cable, so the total length of stranded cable in your system should be kept to a minimum to reduce signal degradation. collapse

Black Box Explains... Using fiber optics for KVM extension.

If you‘re sending KVM signals between buildings for an extended distance, in areas supplied by different power sources, in an electrically noisy environment, or where data security is a big... more/see it nowconcern, you need to use a fiber optic-based KVM extender.

Optical fiber is an ideal transmission medium not only for backbone and horizontal connection, but also for workstation-to-backracked CPU or server links. It works very well in applications where you need to transfer large, bandwidth-consuming data files over long distances, and where you require immunity from electrical interference or data theft.

The choice for extraordinary reach.
Fiber doesn’t have the 100-meter (328-ft.) distance limitation that UTP copper without a booster does. Fiber distances can range from 300 meters (984.2 ft.) to 70 kilometers (24.8 mi.), depending on the cable, wavelength, and network. With fiber-based KVM extenders, the transmitter converts conventional data signals into a modulated light beam, then transports the beam via the fiber to a receiver, which converts the light back into electrical signals.

Many newer fiber-based KVM extenders support both analog and digital transmission. Often, they work by digitizing video output from a local CPU, then sending it across fiber link to a remote unit, which converts it back to the original analog signal. In many cases, one fiber of the fiber pair transmits monitor video serially and the second fiber sends remote mouse and keyboard information back to the local CPU.

The choice for ensuring signal integrity.
Because fiber is made of glass, which is an insulator, no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. This is why fiber-based KVM extenders are beneficial to users in process control, engineering, utility, and factory automation applications. The users need to keep critical information safe and secure off the factory floor but be able to access that data from workstations and control consoles within the harsh environments. Plus, fiber is also less susceptible to temperature fluctuations than copper is, and it can be submerged ?in water.

The choice for greater signal fidelity.
Fiber-based KVM extenders can carry more information with greater fidelity than copper-based ones can. For this reason, they’re ideal for high-data-rate systems in which multimedia workstations are used.

Newer KVM extenders enable you to send both DVI and keyboard and mouse signals over the same fiber cable, transmitting video digitally for zero signal loss. This way, you can get HD-quality resolution even at very long distances from the source. Users in university or government R&D, broadcasting, healthcare—basically anyone who depends on detailed image rendering—can benefit from this technology.

The choice for data security.
Plus, your data is safe when using fiber to connect a workstation with a CPU or server under lock and key. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Many IT managers in military, government, finance, and healthcare choose fiber-based KVM extenders for this very reason. Plus corporations, aware of rising data privacy concerns over customer billing information and the need to protect intellectual property, use this type of extension technology in their offices, too.

Considerations for fiber-based KVM extension.
Before selecting a fiber-based KVM extender, it’s important to know the limitations of your system. You need to know where couplers, links, interconnect equipment, and other devices are going to be placed. If it’s a longer run, you have to determine whether multimode or single-mode fiber cable is needed.

The most important consideration in planning cabling for fiber-based KVM extension is the power budget specification of device connection. The receiver at the remote end has to receive the light signal at a certain level. This value, called the loss budget, tells you the amount of loss in decibels (dB) that can be present in the link between the two devices before the units fail to perform properly.

Specifically, this value takes the fiber type (multimode or single-mode) and wavelength you intend to use—and the amount of expected in-line attenuation—into consideration. This is the decrease of signal strength as it travels through the fiber cable. In the budget loss calculation, you also have to account for splices, patch panels, and connectors, where additional dBs may lost in the entire end-to-end fiber extension. If the measured loss is less than the number calculated by your loss budget, your installation is good.

Testers are available to determine if the fiber cabling supports your intended application. You can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget to determine your link loss margin.

Also, in some instances, particularly when using single-mode fiber to drive the signal farther, the signal may be too strong between connected devices. This causes the light signal to reflect back down the fiber cable, which can corrupt data, result in a faulty transmission, and even damage equipment. To prevent this, use fiber attenuators. They’re used with ?single-mode fiber optic devices and cable to filter the strength of the fiber optic signal from the transmitter’s LED output so it doesn’t overwhelm the receiver. Depending on the type of attenuator attached to the devices at each end of the link, you can diminish the strength of the light signal a variable amount by a certain number of decibels.

Need help calculating your budget loss? Call our FREE Tech Support. If necessary, they can even recommend a fusion splicing fiber kit, a fiber tester, or a signal attenuator for your specific requirements. collapse

Black Box Explains... Multiplatform cabling environments.

When using a ServSwitch™ with multiple computer platforms, choosing which peripherals to use to control your diverse group of CPUs can be confusing. Because of the wide variation in connector... more/see it nowtypes and compatibilities, there is a hierarchy to follow when choosing your “user station“ keyboard, monitor, and mouse.

1. If you have at least one Sun® computer in your application, you should use a Sun keyboard and mouse to control your CPUs.

2. If you have a mixture of PCs and Mac® computers, use your PC-style keyboard and mouse to control your CPUs. collapse

Black Box Explains...Breakout-style cables.

With breakout- or fanout-style cables, the fibers are packaged individually. A breakout cable is basically several simplex cables bundled together in one jacket. Breakout cables are suitable for riser and... more/see it nowplenum applications, and conduit runs.

This differs from distribution-style cables where several tight-buffered fibers are bundled under the same jacket.

This design of the breakout cable adds strength to the cable, although that makes it larger and more expensive than distribution-style cables.

Because each fiber is individually reinforced, you can divide the cable into individual fiber lines. This enables quick connector termination, and eliminates the need for patch panels.

Breakout cable can also be more economical because it requires much less labor to terminate.

You may want to choose a cable that has more fibers than you actually need in case of breakage during termination or for future expansion. collapse

Black Box Explains...Thermocouples

A thermocouple is a device that measures temperature by using the fact that a junction between two different metals produces a varying voltage related to their temperature. Two common types... more/see it nowof thermocouple are Type J and Type K.

Type J thermocouples use iron paired with a nickel-copper alloy. Type J thermocouples may cover a temperature range of up to -40 to +1382° F (-40 to +750°C), and offer high sensitivity.

Type K, the most common type of thermocouple, uses nickel-chromium and nickel-aluminum alloys. Because Type K is an early specification, its characteristics vary widely; individual thermocouples may cover a range of up to -328 to +2462 °F (-200 to +1350 °C). collapse

Black Box Explains...Component video.

Traditional Composite video standards—NTSC, PAL, or SECAM—combine luminance (brightness), chrominance (color), blanking pulses, sync pulses, and color burst information into a single signal.

Another video standard—S-Video—separates luminance from chrominance to provide... more/see it nowsome improvement in video quality.

But there’s a new kind of video called Component video appearing in many high-end video devices such as TVs and DVD players. Component video is an advanced digital format that separates chrominance, luminance, and synchronization into separate signals. It provides images with higher resolution and better color quality than either traditional Composite video or S-Video. There are two kinds of Component video: Y-Cb-Cr and Y-Pb-Pr. Y-Cb-Cr is often used by high-end DVD players. HDTV decoders typically use the Y-Pb-Pr Component video signal.

Many of today’s high-end video devices such as plasma televisions and DVD players actually have three sets of video connectors: Composite, S-Video, and Component. The easiest way to improve picture quality on your high-end TV is to simply connect it using the Component video connectors rather than the Composite or S-Video connectors. Using the Component video connection enables your TV to make use of the full range of video signals provided by your DVD player or cable box, giving you a sharper image and truer colors.

To use the Component video built into your video devices, all you need is the right cable. A Component video cable has three color-coded BNC connections at each end. For best image quality, choose a high-quality cable with adequate shielding and gold-plated connectors. collapse

Black Box Explains…A terminal server by any other name.

A terminal server (sometimes called a serial server or a console server or a device server) is a hardware device that enables you to connect serial devices across a network.

Terminal... more/see it nowservers acquired their name because they were originally used for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. But if you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse

Black Box Explains...CAT5: When more isn’t always better.

In data communications applications, using products that exceed required capacities is usually not a problem. For example, if a 28.8K modem is required, a 33.6K or 56K model will work... more/see it nowjust fine.

But sometimes, more isn’t better. Take KVM extenders designed to expect CAT5 and only CAT5 cable. You’d expect that Category 3 cable wouldn’t be effective with these products, and you would be right.

But you may also assume that if Category 5 cable works fine, Category 5e, Category 6, and other higher-capacity cables would work even better. Unfortunately, this isn’t the case, and here’s why:

KVM extenders from many manufacturers, including ServSwitch CAT5 KVM Extenders, are designed specifically for the Category 5 specs defined by the TIA/EIA standard. Higher-level cables, such as Category 5e, have different characteristics and specifications. Although differences—specifically twist ratios—might seem small, they can have a negative impact on these extenders, which are expecting a true Category 5 transmission.

So with ServSwitch CAT5 KVM Extenders, you can think big with CAT5—just don’t think bigger. collapse

Black Box Explains...HDBaseT

HDBaseT is a connectivity standard for distribution of uncompressed HD multimedia content. HDBaseT technology converges full HD digital video, audio, 100BaseT Ethernet, power over cable, and various control signals through... more/see it nowa single LAN cable. This is referred to as 5Play™, a feature set that sets HDBaseT technology above the current standard.

HDBaseT delivers full HD/3D and 2K/4K uncompressed video to a network of devices or to a single device (point-to-point). HDBaseT supports all key HDMI 1.4 features, including EPG, Consumer Electronic Controls (CEC), EDID, and HDCP. The unique video coding scheme ensure the highest video quality at zero latency.

As with the video, HDBaseT audio is passed through from the HDMI chipset. All standard formats are supported, including Dolby Digital, DTS, Dolby TrueHD, DTS HD-Master Audio.

HDBaseT supports 100Mb Ethernet, which enables communications between electronic devices including televisions, sound systems, computers, and more. Additionally, Ethernet support enables access to any stored multimedia content (such as video or music streaming).

HDBaseT's wide range of control options include CEC, RS-232, and infrared (IR). IP control is enabled through Ethernet channel support.

The same cable that delivers video, audio, Ethernet, and control can deliver up to 100W of DC power. This means users can place equipment where one wants to, not just those locations with an available power source. HDBaseT Architecture
HDBaseT sends video, audio, Ethernet, and control from the source to the display, but only transfers 100Mb of data from display to source (Ethernet and control data). The asymmetric nature of HDBaseT is based on a digital signal processing (DSP) engine and an application front end (AFE) architecture.

HDBaseT uses a proprietary version of Pulse Amplitude Modulation (PAM) technology, where digital data is represented as a coding scheme using different levels of DC voltage at high rates. This special coding provides a better transfer quality to some kinds of data without the need to "pay" the protecting overhead for the video content, which consumes most of the bandwidth. HDBaseT PAM technology enables the 5Play feature-set to be maintained over a single 330-foot (100 m) CAT cable without the electrical characteristics of the wire affecting performance.


Results 131-140 of 201 << < 11 12 13 14 15 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Black Box 1-800-316-7107 Black Box Network Services