Loading


Content Type (x) > Black Box Explains (x)

Results 121-130 of 212 << < 11 12 13 14 15 > >> 

Black Box Explains...Type 1 vs. Type 6 Cable

Type 1 Cable is made of solid wire, typically 22 AWG bare copper. It has braided shielding around each pair. It’s recommended for long runs in walls, conduits, etc.

Type 6... more/see it nowCable is typically made of 26 AWG stranded copper and has one shield around both pairs. It’s lighter and more flexible than Type 1 Cable and has a better “look.” It’s recommended for use in office environments. collapse


Black Box Explains...Industrial Ethernet (Ethernet/IP) and IP-rated connectors.

Ethernet technology is coming to the factory floor. Once limited to office environments, Ethernet has proven to be a robust alternative to the RS-232 interface traditionally used with industrial devices... more/see it nowsuch as programmable logic controllers. Ethernet brings speed, versatility, and cost savings to industrial environments.

The requirements of industrial environments are different than offices, so there are industrial Ethernet standards. The most common is the Ethernet/Industrial Protocol (Ethernet/IP) standard, usually called Industrial Ethernet. Industrial Ethernet adapts ordinary, off-the-shelf IEEE 802.3 Ethernet communication chips and physical media to industrial applications.

The Ingress Protection (IP) ratings developed by the European Committee for Electrotechnical Standardization (CENELEC) specify the environmental protection an enclosure provides.

An IP rating consists of two or three numbers. The first number refers to protection from solid objects or materials; the second number refers to protection from liquids; and the third number, commonly omitted from the rating, refers to protection against mechanical impacts. An IP67 rating means that a connector is totally protected from dust and from the effects of immersion in 5.9 inches (15 cm) to 3.2 feet (1 m) of water for 30 minutes.

Because office-grade RJ-45 connectors do not stand up to an industrial environment, the Ethernet/IP standard calls for sealed industrial RJ-45 connectors that meet an IP67 standard, meaning the connectors are sealed against dust and water. collapse


Black Box Explains... Spread Spectrum wireless technology.

Frequency-Hopping Spread Spectrum wireless communication provides error-free transmission, top security, and high levels of throughput without the need for an FCC site license. The key to Spread Spectrum is a... more/see it nowfrequency-hopping transceiver.

Narrow-band frequency hoppers use a predefined algorithm to maintain synchronization and high throughput between master and remote modems. They achieve this by continually switching or “hopping” from one transmission frequency to another throughout the Spread Spectrum band. The sequence of frequencies is very difficult to predict and thus nearly impossible to eavesdrop on or jam. If interference is encountered at any particular frequency, the built-in error correction detects it and resends the data packet at the next frequency hop. Because EMI/RFI interference rarely affects the entire available bandwidth, and each frequency hop is at least 6 MHz, the radio transmitter has access to as many as 100 frequencies within the spectrum to avoid interference and ensure that data gets through. collapse


Black Box Explains...802.3ah.

802.3ah, also called Ethernet in the First Mile (EFM), is a new Ethernet standard designed to compete with standards such as DSL and cable modem in delivering broadband access to... more/see it nowhomes.

The 802.3ah specification covers point-to-point copper, point-to-point fiber, and point-to-multipoint fiber.

Ethernet in the First Mile over Copper (EFMC)
This point-to-point specification for copper wire takes advantage of DSL technology to send Ethernet over one pair of copper wires at 10 Mbps for 750 meters or 2 Mbps for 2700 meters.

Ethernet in the First Mile over Fiber (EFMF)
This point-to-point specification for single-mode, single-strand or single-mode, duplex fiber sends Ethernet at speeds of 100 Mbps or 1 Gbps up to 10 kilometers. It includes an optional extended temperature range from -40 to 185° F (-40 to 85° C) for outdoor use.

Ethernet in the First Mile over Passive Optical Networks (EPON)
This point-to-multipoint specification for fiber uses an optical splitter to divide the Ethernet signal into separate strands that go to individual subscribers. This enables an ISP to link many subscribers to a single uplink fiber without using active components in the field.

802.3ah includes the OAM specification, which provides utilities for monitoring and troubleshooting Ethernet links remotely, a capability vital for carrier-class deployment. OAM protocols address discovery, link monitoring, remote fault signaling, and remote loopback.

OAM is managed in-band but takes up very little bandwidth so network performance is not noticeably affected. OAM itself is not affected by VLANs or port-access restrictions. collapse


Black Box Explains...Link loss.

Media converters solve the problem of connecting different media types in mixed-media networks. In order to comply with IEEE standards, they implement IEEE data-encoding rules and the Link Integrity Test.

For... more/see it nowa twisted-pair segment, a link is a signal sent by the converters when the cable is in use. If no Link Integrity Test signal is received, the connected device assumes that the link is lost.

With fiber cable, a connected device checks a line by monitoring the Link Integrity Test signal from the converter and the power of the light being received. If the light’s power drops below a certain threshold, the link is lost. In either case, link loss usually results from a broken cable, which is the cause of approximately 70% of all LAN problems.

Link loss is often indicated by an LED on a connected network device. You can also monitor a link with network-management software, such as SNMP, which sends a TRAP (alert) to the management workstation when the link is lost.

Media converters actually function as two separate Multistation Access Units (MAUs). For example, one monitor is a twisted-pair segment and one monitor is a fiber segment. If a fiber cable is broken and the link is lost, a network manager on the twisted-pair end won’t know there’s a problem until users on the fiber side report it.

To solve this problem, Black Box® Modular Media Converters feature a unique Link-Loss capability. This enables the link status on one segment to reflect the link status of the other segment. So if the link is lost on the fiber side, the link is disabled on the UTP segment as well. And the converters will send an SNMP TRAP indicating the loss of link to the management workstation. collapse


Black Box Explains...Fiber optic cable construction.

Fiber optic cable consists of a core, cladding, coating, strengthening fibers, and cable jacket.

Core
This is the physical medium that transports optical data signals from an attached light source to... more/see it nowa receiving device. The core is a single continuous strand of glass or plastic that’s measured (in microns) by the size of its outer diameter. The larger the core, the more light the cable can carry.

All fiber optic cable is sized according to its core’s outer diameter.

The three multimode sizes most commonly available are 50, 62.5, and 100 microns. Single-mode cores are generally less than 9 microns.

Cladding
This is a thin layer that surrounds the fiber core and serves as a boundary that contains the light waves and causes the refraction, enabling data to travel throughout the length of the fiber segment.

Coating
This is a layer of plastic that surrounds the core and cladding to reinforce the fiber core, help absorb shocks, and provide extra protection against excessive cable bends. These buffer coatings are measured in microns (µ) and can range from 250 to 900 microns.

Strengthening fibers
These components help protect the core against crushing forces and excessive tension during installation.

The materials can range from Kevlar® to wire strands to gel-filled sleeves.

Cable jacket
This is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some types can have black or yellow jackets. collapse


DisplayPort cable.

DisplayPort is a digital video interface that was designed by the Video Electronics Standards Association (VESA) in 2006 and has been produced since 2008. It competes directly with HDMI®. Unlike... more/see it nowHDMI, however, DisplayPort is an open standard with no royalties.

This digital interface is used primarily between a computer and a monitor or a high-definition television and is built into many computer chipsets produced today. It’s incredibly versatile, with the capability to deliver digital video, audio, bidirectional communications, and accessory power over a single connector.

DisplayPort v1.1 supports a maximum of 10.8 Gbps over a 2-meter cable; v1.2 supports up to 21.6 Gbps. DisplayPort v1.2 also enables you to daisychain up to four monitors with only a single output cable. It also offers the future promise of DisplayPort Hubs that would operate much like a USB hub.

The standard DisplayPort connector is very compact and features latches that don’t add to the connector’s size. Unlike HDMI, a DisplayPort connector is easily lockable with a pinch-down locking hood, so it can't be easily dislodged. However, a quick squeeze of the connector releases the latch.

DisplayPort supports cable lengths of up to 15 meters with maximum resolutions at cable lengths up to 3 meters. Bidirectional signaling enables DisplayPort to both send and receive data from an attached device.

With the proper adapters, DisplayPort cable can carry DVI and HDMI signals, although this doesn’t work the other way around—DVI and HDMI cable can’t carry DisplayPort. Because DisplayPort can provide power to attached devices, DisplayPort to HDMI or DVI adapters don’t need a separate power supply.

The Mini DisplayPort (MiniDP or mDP) is a miniatured version of the DisplayPort interface. It carries both digital and analog computer video and audio signals. Apple® introduced the Mini DisplayPort connector in 2008 and it is now on all new Mac® computers. It is also being used in newer PC notebooks. This small form factor connector fully supports the VESA DisplayPort protocol. It is particularly useful on systems where space is at a premium, such as laptops, or to support multiple connectors on reduced height add-in cards.

collapse


Black Box Explains...On-screen menus.

When the ServSwitch™ brand of KVM switches was first introduced, there were only two ways to switch: from front-panel push buttons or by sending command sequences from the keyboard. While... more/see it nowthis was more convenient than having a separate keyboard, monitor, and mouse for each CPU, the operator still had to remember key combinations and which server was connected to which port—leading to many cryptic, scribbled notes attached to the switch and to the workstation.

But with the advent of on-screen menus, an operator can use easy-to-read, pop-up menus to identify and select CPUs. It’s even possible to give each CPU a name that makes sense to you—names like “MIS Server,” “Accounting Server,” and so on.
collapse


Black Box Explains...The fully accessorized rack.

After you choose your rack, consider how you’ll set it up and what accessories you might need.

Your rack may need to be secured. A typical rack has about a... more/see it now15"-deep base, providing some stability, but not enough to prevent the rack from tipping if heavy objects are mounted on it. To solve this problem, most rack bases can be bolted to the floor.

You also need to decide how to accommodate standalone equipment, which is not actually rackmounted or bolted to the rack. You can place small devices on a cantilevered shelf such as the RM001, however, you should place heavier items such as monitors on a center-weight shelf such as the RM377.

Small extras, such as Patch Panel Hinge Kits, can make your job easier. These hinges enable you to access the back of a patch panel simply by swinging it out from the rack. They’re particularly useful for racks in hard-to-reach areas.

If you need to mount both 19" and 23" equipment in the same rack, use a 23" rack with 23"-to-19" Rackmount Adapters to fit the 19" devices.

For a neater appearance, you can cover unused spaces in a rack with Filler Panels.

Cable management is also an important consideration. Our Horizontal and Vertical Cable Managers help you to route cables along the sides of racks, between racks, and to the rackmounted equipment. collapse


SHDSL, VDSL, VDSL2, ADSL, and SDSL.

xDSL, a term that encompasses the broad range of digital subscriber line (DSL) services, offers a low-cost, high-speed data transport option for both individuals and businesses, particularly in areas without... more/see it nowaccess to cable Internet.

xDSL provides data transmission over copper lines, using the local loop, the existing outside-plant telephone cable network that runs right to your home or office. DSL technology is relatively cheap and reliable.

SHDSL can be used effectively in enterprise LAN applications. When interconnecting sites on a corporate campus, buildings and network devices often lie beyond the reach of a standard Ethernet segment. Now you can use existing copper network infrastructure to connect remote LANS across longer distances and at higher speeds than previously thought possible.

There are various forms of DSL technologies, all of which face distance issues. The quality of the signals goes down with increasing distance. The most common will be examined here, including SHDSL, ADSL, and SDSL.

SHDSL (also known as G.SHDSL) (Single-Pair, High-Speed Digital Subscriber Line) transmits data at much higher speeds than older versions of DSL. It enables faster transmission and connections to the Internet over regular copper telephone lines than traditional voice modems can provide. Support of symmetrical data rates makes SHDSL a popular choice for businesses for PBXs, private networks, web hosting, and other services.

Ratified as a standard in 2001, SHDSL combines ADSL and SDSL features for communications over two or four (multiplexed) copper wires. SHDSL provides symmetrical upstream and downstream transmission with rates ranging from 192 kbps to 2.3 Mbps. As a departure from older DSL services designed to provide higher downstream speeds, SHDSL specified higher upstream rates, too. Higher transmission rates of 384 kbps to 4.6 Mbps can be achieved using two to four copper pairs. The distance varies according to the loop rate and noise conditions.

For higher-bandwidth symmetric links, newer G.SHDSL devices for 4-wire applications support 10-Mbps rates at distances up to 1.3 miles (2 km). Equipment for 2-wire deployments can transmit up to 5.7 Mbps at the same distance.

SHDSL (G.SHDSL) is the first DSL standard to be developed from the ground up and to be approved by the International Telecommunication Union (ITU) as a standard for symmetrical digital subscriber lines. It incorporates features of other DSL technologies, such as ADSL and SDS, and is specified in the ITU recommendation G.991.2.

Also approved in 2001, VDSL (Very High Bitrate DSL) as a DSL service allows for downstream/upstream rates up to 52 Mbps/16 Mbps. Extenders for local networks boast 100-Mbps/60-Mbps speeds when communicating at distances up to 500 feet (152.4 m) over a single voice-grade twisted pair. As a broadband solution, VDSL enables the simultaneous transmission of voice, data, and video, including HDTV, video on demand, and high-quality videoconferencing. Depending on the application, you can set VDSL to run symmetrically or asymmetrically.

VDSL2 (Very High Bitrate DSL 2), standardized in 2006, provides a higher bandwidth (up to 30 MHz) and higher symmetrical speeds than VDSL, enabling its use for Triple Play services (data, video, voice) at longer distances. While VDSL2 supports upstream/downstream rates similar to VDSL, at longer distances, the speeds don’t fall off as much as those transmitted with ordinary VDSL equipment.

ADSL (Asymmetric DSL) provides transmission speeds ranging from downstream/upstream rates of 9 Mbps/640 kbps over a relatively short distance to 1.544 Mbps/16 kbps as far away as 18,000 feet. The former speeds are more suited to a business, the latter more to the computing needs of a residential customer.

More bandwidth is usually required for downstream transmissions, such as receiving data from a host computer or downloading multimedia files. ADSL’s asymmetrical nature provides more than sufficient bandwidth for these applications.

The lopsided nature of ADSL is what makes it most likely to be used for high-speed Internet access. And the various speed/distance options available within this range are one more point in ADSL’s favor. Like most DSL services standardized by ANSI as T1.413, ADSL enables you to lease and pay for only the bandwidth you need.

SDSL (Symmetric DSL) represents the two-wire version of HDSL—which is actually symmetric DSL, albeit a four-wire version. SDSL is also known within ANSI as HDSL2.

Essentially offering the same capabilities as HDSL, SDSL offers T1 rates (1.544 Mbps) at ranges up to 10,000 feet and is primarily designed for business applications.

collapse

Results 121-130 of 212 << < 11 12 13 14 15 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services