Content Type (x) > Black Box Explains (x)

Results 121-130 of 203 << < 11 12 13 14 15 > >> 

Black Box Explains... Standard and ThinNet Ethernet cabling.

The Ethernet standard supports 10-, 100-, and 1000-Mbps speeds. It supports both half- and full-duplex configurations over twisted-pair and fiber cable, as well as half-duplex over coax cable.

However, the Thick... more/see it nowand ThinNet Ethernet standards support only 10-Mbps speeds.

Standard (Thick) Ethernet (10BASE5)
• Uses “Thick” coax cable with N-type connectors for a backbone and a transceiver cable with 15-pin connectors from the transceiver to the network interface card.
• The maximum number of segments is five, but only three can have computers attached. The others are for network extension.
• The maximum length of one segment is 500 meters.
• The maximum total length of all segments is 2500 meters.
• The maximum length of one transceiver cable is 50 meters.
• The minimum distance between transceivers is 2.5 meters.
• No more than 100 transceiver connections per segment are allowed. A repeater counts as a station for both segments.

Thin Ethernet (ThinNet) (10BASE2)
• Uses “Thin” coax cable (RG-58A/U or RG-58C/U).
• The maximum length of one segment is 185 meters.
• The maximum number of segments is five.
• The maximum total length of all segments is 925 meters.
• The minimum distance between T-connectors is 0.5 meters.
• No more than 30 connections per segment are allowed.
• T-connectors must be plugged directly into each device. collapse

Black Box Explains...Layer 3 switching.

In the last decade, network topologies have typically featured routers along with hubs or switches. The hub or switch acts as a central wiring point for LAN segments while the... more/see it nowrouter takes care of higher-level functions such as protocol translation, traffic between LAN segments, and wide-area access.

Layer 3 switching, which combines Layer 2 switching and Layer 3 IP routing, provides a more cost-effective way of setting up LANs by incorporating switching and routing into one device. While a traditional Layer 2 switch simply sends data along without examining it, a Layer 3 switch incorporates some features of a router in that it examines data packets before sending them on their way. The integration of switching and routing in a Layer 3 switch takes advantage of the speed of a switch and the intelligence of a router in one economical package.

There are two basic types of Layer 3 switching: packet-by-packet Layer 3 (PPL3) and cut-through Layer 3.

PPL3 switches are technically routers in that they examine all packets before forwarding them to their destinations. They achieve top speed by running protocols such as OSPF (Open Shortest Path First) and by using cache routing tables. Because these switches understand and take advantage of network topology, they can blow the doors off traditional routers with speeds of more than 7,000,000 (that’s seven million!) packets per second.

Cut-through Layer 3 switching relies on a shortcut for top speed. Cut-through Layer 3 switches, rather than examining every packet, examine only the first in a series to determine its destination. Once the destination is known, the data flow is switched at Layer 2 to achieve high speeds. collapse

Black Box Explains...IEEE 1284

Introduced in 1994, the IEEE 1284 standard addresses data-transfer speeds and distance for parallel interfaces. Standard parallel interfaces support speeds of up to 150 kbps at distances of up to... more/see it now6 feet (1.8 m); IEEE 1284 parallel interfaces can send your data over 100 times faster at up to five times the distance!

Although the Centronics® interface enabled only unidirectional computer-to-peripheral data flow, the IEEE 1284 interface enables bidirectional flow so peripherals can send data to the computer.

The IEEE 1284 standard covers five separate parallel modes, from the original Centronics (with which it’s compatible) to the high-performance Enhanced Parallel Port (EPP) mode. The computer negotiates with the attached device to determine which mode to use. collapse

Black Box Explains...Controlling GPIO interfaces with iCOMPEL.

With the iCOMPEL™, interactivity goes beyond touchscreen support. It also supports general-purpose input/output (GPIO) capabilities. Through an external device with a GPIO interface, the playing of on-screen information can be... more/see it nowtriggered (or halted) by signals originating from device inputs via contact closures. These can be external infrared motion detectors, light sensors, switches, push buttons, building control systems—even external SCADA collection systems.

The possibilities are endless. You can set up a screen to provide emergency notification during crises—based on a signal sent when a secure door is opened or when an environmental condition occurs. Or simply use a screen to welcome visitors walking through your main door. You can even have a screen change from a static display to an interactive touchscreen when someone approaches.

Just connect the external device to the iCOMPEL using our ICOMP-GPIO Adapter, which adapts the USB port on the iCOMPEL to a DB9 (RS-232) port. (NOTE: Older iCOMPEL units include a DB9 port, so the adapter isn’t needed.) This adapted port can be used for sending user-defined RS-232 strings and receiving RS-232 strings. The port also offers four input lines for binary events, such as motion detection, contact closure, or other device signaling. In some cases, you can even use the RS-232 connection to power simple detection devices.

Each RS-232 input item can be included in a playlist and used to generate an Advance To or Change Layout on a user-defined transition of the line. The Advance To or Change Layout commands can be configured to change the media being played by the iCOMPEL.

The iCOMPEL has the ability to control the output state of the RS-232 DTR and RTS lines. The lines are controlled by RS-232 output items, which can appear as items in the iCOMPEL playlist menu. The RS-232 output items can assign the state of one or both RS-232 output lines and optionally a string of characters to be output.

For further details on how to activate touchscreen and contact closure capabilities on an iCOMPEL unit, contact our FREE Tech Support. Our experts can also recommend accessories for motion detection and other GPIO-controlled functions.

Black Box Explains...Serial ATA technology.

Introduced in the mid 1980s, the Advanced Technology Attachment (ATA) interconnect soon became the industry-standard parallel input/output bus interface for connecting internal storage devices. Ultra ATA, which builds on the... more/see it noworiginal parallel ATA interface, has become the most commonly used type of interconnect.

But in recent years, sharing digital video and audio files over high-speed networks and other data-intensive uses has placed greater demands on hard drives, optical drives, and media-storage peripherals. So, not surprisingly, Ultra ATA now faces competition from a new technology—Serial ATA.

As the name implies, this new interconnect uses a serial bus architecture instead of a parallel one. Serial ATA currently supports speeds up to 150 MBps. Further enhancements could to boost rates as high as 600 MBps.

Compared with Ultra ATA, Serial ATA offers distinct advantages, including a point-to-point topology that enables you to dedicate 150 MBps to each connected device. Each channel can work independently and, unlike the “master-slave” shared bus of Ultra ATA, there’s no drive contention or interface bandwidth sharing.

Compared with Ultra ATA’s parallel bus design, Serial ATA requires a single signal path for sending data bits and a second path for receiving acknowledgement data. Each path travels across a 2-wire differential pair, and the bus contains four signal lines per channel. Fewer interface signals means the interconnect cable requires less board space.

Serial ATA also uses thinner cables (no more than 0.25" wide) that are available in longer lengths (up to 1 meter) as well as an improved connector design to reduce crosstalk. It also offers hot-swappable capabilities.

Although Serial ATA can’t interface directly with earlier Ultra ATA devices, it complies fully with the ATA protocol, so software between the two interconnects is compatible. collapse

Black Box Explains...DIN rail.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse

Black Box Explains...Wireless Ethernet standards.

IEEE 802.11
The precursor to 802.11b, IEEE 802.11 was introduced in 1997. It was a beginning, but 802.11 only supported speeds up to 2 Mbps. And it supported two entirely different... more/see it nowmethods of encoding—Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). This led to confusion and incompatibility between different vendors’ equipment.

IEEE 802.11b
802.11b is comfortably established as the most popular wireless standard. With the IEEE 802.11b Ethernet standard, wireless is fast, easy, and affordable. Wireless devices from all vendors work together seamlessly. 802.11b is a perfect example of a technology that has become both sophisticated and standardized enough to really make life simpler for its users.

The 802.11b extension of the original 802.11 standard boosts wireless throughput from 2 Mbps all the way up to 11 Mbps. 802.11b can transmit up to 200 feet under good conditions, although this distance may be reduced considerably by the presence of obstacles such as walls.

This standard uses DSSS. With DSSS, each bit transmitted is encoded and the encoded bits are sent in parallel across an entire range of frequencies. The code used in a transmission is known only to the sending and receiving stations. By transmitting identical signals across the entire range of frequencies, DSSS helps to reduce interference and makes it possible to recover lost data without retransmission.

IEEE 802.11a
The 802.11a wireless Ethernet standard is new on the scene. It uses a different band than 802.11b—the 5.8-GHz band called U-NII (Unlicensed National Information Infrastructure) in the United States. Because the U-NII band has a higher frequency and a larger bandwidth allotment than the 2.4-GHz band, the 802.11a standard achieves speeds of up to 54 Mbps. However, it’s more limited in range than 802.11b. It uses an orthogonal frequency-division multiplexing (OFDM) encoding scheme rather than FHSS or DSSS.

IEEE 802.11g
802.11g is an extension of 802.11b and operates in the same 2.4-GHz band as 802.11b. It brings data rates up to 54 Mbps using OFDM technology.

Because it's actually an extension of 802.11b, 802.11g is backward-compatible with 802.11b—an 802.11b device can interface directly with an 802.11g access point. However, because 802.11g also runs on the same three channels as 802.11b, it can crowd already busy frequencies.

Super G® is a subset of 802.11g and is a proprietary extension of the 802.11g standard that doubles throughput to 108 Mbps. Super G is not an IEEE approved standard. If you use it, you should use devices from one vendor to ensure compatibility. Super G is generally backwards compatible with 802.11g.

80211n improves upon 802.11g significantly with an increase in the data rate to 600 Mbps. Channels operate at 40 MHz doubling the channel width from 20 MHz. 802.11n operates on both the 2.4 GHz and the 5 GHz bands. 802.11n also added multiple-input multiple-output antennas (MIMO).

Multiple-Input/Multiple-Output (MIMO) is a part of the new IEEE 802.11n wireless standard. It’s a technique that uses multiple signals to increase the speed, reliability, and coverage of wireless networks. It transmits multiple datastreams simultaneously, increasing wireless capacity to up to 100 or even 250 Mbps.

This wireless transmission method takes advantage of a radio transmission characteristic called multipath, which means that radio waves bouncing off surfaces such as walls and ceilings will arrive at the antenna at fractionally different times. This characteristic has long been considered to be a nuisance that impairs wireless transmission, but MIMO technology actually exploits it to enhance wireless performance.

MIMO sends a high-speed data stream across multiple antennas by breaking it into several lower-speed streams and sending them simultaneously. Each signal travels multiple routes for redundancy.

To pick up these multipath signals, MIMO uses multiple antennas and compares signals many times a second to select the best one. A MIMO receiver makes sense of these signals by using a mathematical algorithm to reconstruct the signals. Because it has multiple signals to choose from, MIMO achieves higher speeds at greater ranges than conventional wireless hardware does. collapse

Black Box Explains...50-µm vs. 62.5-µm fiber optic cable.

As today’s networks expand, the demand for more bandwidth and greater distances increases. Gigabit Ethernet and the emerging 10 Gigabit Ethernet are becoming the applications of choice for current and... more/see it nowfuture networking needs. Thus, there is a renewed interest in 50-micron fiber optic cable.

First used in 1976, 50-micron cable has not experienced the widespread use in North America that 62.5-micron cable has.

To support campus backbones and horizontal runs over 10-Mbps Ethernet, 62.5-micron fiber, introduced in 1986, was and still is the pre-dominant fiber optic cable because it offers high bandwidth and long distance.

One reason 50-micron cable did not gain widespread use was because of the light source. Both 62.5- and 50-micron fiber cable can use either LED or laser light sources. But in the 1980s and 1990s, LED light sources were common. Because 50-micron cable has a smaller aperture, the lower power of the LED light source caused a reduction in the power budget compared to 62.5-micron cable—thus, the migration to 62.5-micron cable. At that time, laser light sources were not highly developed and were rarely used with 50-micron cable — and, when they were, it was mostly in research and technological applications.

The cables share many characteristics. Although 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber), both 50- and 62.5-micron cable use the same cladding diameter of 125 microns. Because they have the same outer diameter, they’re equally strong and are handled in the same way. In addition, both types of cable are included in the TIA/EIA 568-B.3 standards for structured cabling and connectivity.
As with 62.5-micron cable, you can use 50-micron fiber in all types of applications: Ethernet, FDDI, 155-Mbps ATM, Token Ring, Fast Ethernet, and Gigabit Ethernet. It is recommended for all premise applications: backbone, horizontal, and intrabuilding connections. And it should be considered especially for any new construction and installations. IT managers looking at the possibility of 10 Gigabit Ethernet and future scalability will get what they need with 50-micron cable. collapse

Black Box Explains...Remote power control.

Simply put, remote power control is the ability to reset or reboot PC, LAN, telecom, and other computer equipment without being at the equipment’s location.

Who needs remote power control?... more/see it nowAny organization with a network that reaches remote sites. This can include branch offices, unmanned information kiosks, remote monitoring stations, alarm and control systems, and even HVAC systems.

When equipment locks up at remote sites, it is usually up to the system manager at headquarters to reset it. Often, there aren’t any technically trained personnel at the remote site who can perform maintenance and resets on equipment. So, in order to save traveling time and minimize downtime, remote power control enables the system manager to take care of things at the office without ever leaving home!

Remote power control can be done with modems or existing or special phone lines. The ideal system uses “out-of-band management,“ an alternate path over an ordinary dialup line that doesn’t interfere with network equipment.

An effective remote power control system incorporates the following:
• An existing phone line, such as a line being used for a fax, modem, or phone.
• Transparent operation. The system shouldn’t interfere with or be affected by normal calls.
• Security features. The system should prevent unauthorized access to network equipment.
• Flexibility. System managers should be able to dial in from anywhere and control mulitple devices with one call.
• Have power control devices that meet UL® and FCC requirements. collapse

Black Box Explains…SFP compatibility.

Standards for SFP fiber optic media are published in the SFP Multi-Source Agreement, which specifies size, connectors, and signaling for SFPs, with the idea that all SFPs are compatible with... more/see it nowdevices that have appropriate SFP slots. These standards, which also extend to SFP+ and XFP transceivers, enable users to mix and match components from different vendors to meet their own particular requirements.

However, some major manufacturers, notably Cisco®, HP®, and 3Com®, sell network devices with SFP slots that lock out transceivers from other vendors. Because the price of SFPs—especially Gigabit SFPs and 10GBASE SFP+ and XFP transceivers—can add significantly to the price of a switch, this lock-out scheme raises hardware costs and limits transceiver choices.

Many vendors don’t advertise that SFP slots on their devices don’t accept standard SFPs from other vendors. This can lead to unpleasant surprises when a device simply refuses to communicate with an SFP.

Another game that some vendors play is to build devices that accept open-standard SFPs, but refuse to support those devices when SFPs from another vendor are used with them.

The only way around this “lock-in” practice is to only buy network devices that accept standard SFPs from all vendors and to buy from vendors that support their devices no matter whose SFPs are used with them. Questions? Call our FREE Tech Support at 724-746-5500. collapse

Results 121-130 of 203 << < 11 12 13 14 15 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Black Box 1-800-316-7107 Black Box Network Services