Content Type (x) > Black Box Explains (x)

Results 111-120 of 213 << < 11 12 13 14 15 > >> 

Black Box Explains...Advanced printer switches.

Matrix—A matrix switch is a switch with a keypad for selecting one of many input ports to connect to any one of many output ports.

Port-Contention—A port-contention switch is an... more/see it nowautomatic electronic switch that can be serial or parallel. It has multiple input ports but only one output port. The switch monitors all ports simultaneously. When a port receives data, it prints and all the other ports have to wait.

Scanning—A scanning switch is like a port-contention switch, but it scans ports one at a time to find one that’s sending data.

Code-Operated—Code-operated switches receive a code (data string) from a PC or terminal to select a port.

Matrix Code-Operated—This matrix version of the code-operated switch can be an any-port to any-port switch. This means than any port on the switch can attach to any other port or any two or more ports can make a simultaneous link and transfer data. collapse

Black Box Explains...Token Ring Cabling

The original Token Ring specifications called for shielded twisted-pair (STP) cable using either a DB9 connector or a unique square connector called the IBM data connector. Later, Token Ring was... more/see it nowadapted to use conventional unshielded twisted-pair (UTP) cable with RJ-45 connectors. The most common kinds of Token Ring cabling in use to day are Type 1 and Type 6 STP as well as Type 3 UTP.

Type 1 shielded twisted-pair (STP) cable is the original wiring for Token Ring. In Type 1 cabling, each wire is constructed of 22 AWG solid copper. Type 1 cable is not as flexible as Type 6 cable and is generally used for long runs in areas where twists and turns are less likely, such as in walls or conduits.

Type 6 Token Ring cable is a lighter, more pliable version of Type 1 cable. It’s constructed of two stranded 26 AWG copper pairs that are surrounded by an overall braided shield. Type 6 cable is commonly used in offices and open areas, and its flexible construction enables it to negotiate multiple twists and turns.

Type 3 or UTP Token Ring cabling uses the same twisted-pair CAT3, CAT5, or CAT5e cabling with RJ-45 connectors as 10BASE-T Ethernet does. Attaching older Type 1 Token Ring to UTP Token Ring requires a balun or adapter. collapse

Black Box Explains... Smart Serial Interface

Smart Serial is the Cisco router interface. It uses a space-saving 26-pin connector that automatically detects RS-232, RS-449, RS-530, X.21, and V.35 interfaces for both DTE and DCE devices based... more/see it nowon the type of cable used.

Smart Serial connectors can be found on Smart Serial cables and on the dual-serial-port WAN interface cards used in Cisco 2600 and 1720 series routers. The cables feature a Smart Serial connector on one end and a standard cable connector (such as DB25 or V.35) on the other end. The Smart Serial connector attaches to the dual-serial-port WAN interface card.

Each port on the WAN interface card features a Smart Serial connector. Ports can be configured independently to support two different physical interfaces. For example, you can run RS-232 cable to one port and RS-449 cable to the other port using a single WAN interface card.

What if you need to replace that RS-232 cable with V.35 cable? Just plug a Smart Serial–V.35 cable into the port. Because any Smart Serial connector on the WAN interface card attaches to any Smart Serial cable connector, no additional interface or adapter is necessary. Changing the configuration of your network is literally a snap! collapse

Black Box Explains...Designing your wireless network.

Setting up wireless devices that belong to the 802.11 family is relatively simple, but you do have to pay attention to a few simple factors.

Ad-hoc or infrastructure... more/see it nowmode?

The 802.11 wireless standards support two basic configurations: ad-hoc mode and infrastructure mode.

In ad-hoc mode, wireless user devices such as laptop computers and PDAs communicate directly with each other in a peer-to-peer manner without the benefit of access points.

Ad-hoc mode is generally used to form very small spontaneous networks. For instance, with ad-hoc mode, laptop users in a meeting can quickly establish a small network to share files.

Infrastructure mode uses wireless access points to enable wireless devices to communicate with each other and with your wired network. Most networks use infrastructure mode.

The basic components of infrastructure mode networks include:

  • The radios embedded or installed within the wireless devices themselves. Many notebook computers and other Wi-Fi-compliant mobile devices, such as PDAs, come with the transmitters built in. But for others, you need to install a card-type device to enable wireless communications. Desktop PCs may also need an ISA or a PCI bus adapter to enable the cards to work.
  • The access point, which acts as a base station that relays signals between the 802.11 devices.
One or many access points?

Access points are standalone hardware devices that provide a central point of communication for your wireless users. How many you need in your application depends on the number of users and the amount of bandwidth required by each user. Bandwidth is shared, so if your network has many users who routinely send data-heavy multimedia files, additional access points may be required to accommodate the demand.

A small-office network with fewer than 15 users may need just 1 access point. Larger networks require multiple points. If the hardware supports it, you can overlap coverage areas to allow users to roam between cells without any break in network coverage. A user’s wireless device picks up a signal beacon from the strongest access point to maintain seamless coverage.

How many access points to use also depends on your operating environment and the required range. Radio propagation can be affected by walls and electrical interference that can cause signal reflection and fading. If you’re linking mobile users indoors-where walls and other obstructions impede the radiated signal-the typical maximum range is 150 feet. Outdoors, you can get greater WLAN range-up to 2000 feet (depending on your antenna type) where there’s a clear line of sight!

For optimal speed and range, install your wireless access point several feet above the floor or ground and away from metal equipment or large appliances that may emit interference.

Battle of the bands.

In addition to sharing bandwidth, users also share a band. Most IEEE 802.11 or 802.11b devices function in the 2.4-2.4835-GHz band. But these frequencies are often congested, so you may want to use devices that take advantage of the IEEE 802.11a 5.725-5.825-GHz band.

No matter what frequency you use, you’ll want to isolate your users from outsiders using the same frequency. To do this, assign your users a network identifier, such as an Extended Service Set Identifier (ESSID), as well as distinct channels.

Web and wired network links.

The access point links your wireless network to your wired network, enabling your wireless users to access shared data resources and devices across your LAN enterprise. Some access points even feature capabilities for routing traffic in one or both directions between a wired and wireless network.

For Internet access, connect a broadband router with an access point to an Internet connection over a broadband service such as DSL, cable modem, or satellite.

For connecting network printers, you can dedicate a computer to act as a print server or add a wireless print server device; this enables those on your wireless network to share printers.

When to use external antennas.

If you plan to install access points, you can boost your signal considerably by adding external antennas. Various mounting configurations and high- and low-gain options are available.

You can also use add-on antennas to connect nodes where the topology doesn’t allow for a clear signal between access points. Or use them to link multiple LANs located far apart.

Additional external antennas are also useful to help overcome the effects of multipath propagation in which a signal takes different paths and confuses the receiver. It’s also helpful to deploy antennas that propagate the signal in a way that fits the environment. For instance, for a long, narrow corridor, use an antenna that focuses the RF pattern in one direction instead of one that radiates the signal in all directions.

Plan ahead with a site survey.

A site survey done ahead of time to plot where the signal is the strongest can help you identify problem areas and avoid dead spots where coverage isn’t up to par or is unreliable. For this, building blueprints are helpful in revealing potential obstructions that you might not see in your physical site walkthrough.

To field test for a clear signal path, attach an antenna to an access point or laptop acting as the transmitter at one end. Attach another antenna to a wireless device acting as a receiver at the other end. Then check for interference using RF test equipment (such as a wireless spectrum analyzer) and determine whether vertical or horizontal polarization will work best.

Need help doing this? Call us. We even offer a Site Survey Kit that has a variety of antennas included. Great for installers, the kit enables you to test a variety of antennas in the field before placing a larger antenna order.


Black Box Explains...Selecting fiber line drivers.

When choosing a fiber driver, you should make a power budget, calculate the speed and distance of your cable run, and know the interface requirements of all your devices.

Many of... more/see it nowour fiber drivers are for single-mode fiber optic cable. Compared to multimode fiber, single-mode delivers up to 50 times more distance. And single-mode at full-duplex enables up to two times the data throughput of multimode fiber. collapse

Black Box Explains...SCSI-1, SCSI-2, SCSI-3, and SCSI-5.

There are standards…and there are standards applied in real-world applications. This Black Box Explains illustrates how SCSI is interpreted by many SCSI manufacturers. Think of these as common SCSI connector... more/see it nowtypes, not as firm SCSI specifications. Notice, for instance, there’s a SCSI-5, which isn’t listed among the other approved and proposed specifications. However, for advanced SCSI multiport applications, SCSI-5 is often the connector of choice.

Supports transfer rates up to 5 MBps and seven SCSI devices on an 8-bit bus. The most common connector is the Centronics® 50 or a DB50. A Micro Ribbon 50 is also used for internal connections. SCSI-1 equipment, such as controllers, can also have Burndy 60 or 68 connectors.

SCSI-2 introduced optional 16- and 32-bit buses called “Wide SCSI.“ Transfer rate is normally 10 MBps but SCSI-2 can go up to 40 MBps with Wide and Fast SCSI. SCSI-2 usually features a Micro D 50-pin connector with thumbclips. It’s also known as Mini 50 or Micro DB50. A Micro Ribbon 60 connector may also be used for internal connections.

Found in many high-end systems, SCSI-3 commonly uses a Micro D 68-pin connector with thumbscrews. It’s also known as Mini 68. The most common bus width is 16 bits with transfer rates of 20 MBps.

SCSI-5 is also called a Very High-Density Connector Interface (VHDCI) or 0.8-mm connector. It’s similar to the SCSI-3 MD68 connector in that it has 68 pins, but it has a much smaller footprint. SCSI-5 is designed for SCSI-5, next-generation SCSI connections. Manufacturers are integrating this 0.8-mm design into controller cards. It’s also the connector of choice for advanced SCSI multiport applications. Up to four channels can be accommodated in one card slot. Connections are easier where space is limited. collapse

Black Box Explains...Coax connectors.

The BNC (Bayonet-Neill-Concelman) connector is the most commonly used coax connector. This large ”bayonet“ connector features a slotted outer conductor and an inner plastic dielectric, and it offers easy connection... more/see it nowand disconnection. After insertion, the plug is turned, tightening the pins in the socket. It is widely used in video and Radio Frequency (RF) applications up to 2.4 GHz. It is also common in 10BASE2 Ethernet networks, on cable interconnections, network cards, and test equipment.

The TNC connector is a threaded version of the BNC connector. It works in frequencies up to 12 GHz. It‘s commonly used in cellular telephone RF/antenna applications.

The N connector is a larger, threaded connector that was designed in the 1940s for military systems operating at less than 5 GHz. In the 1960s, improvements raised performance to 12 GHz. The connector features an internal gasket and is hand tightened. It is common on 2.4-GHz antennas.

The UHF connector looks like a coarse-threaded, big center-conductor version of the N connector. It was developed in the 1930s. It is suitable for use up to 200–300 MHz and generally offers nonconstant impedance.

The F connector is most often used in cable and satellite TV and antenna applications; and it performs well at high frequencies. The connector has a 3/8–32 coupling thread. Some F connectors are also available in a screw-on style.

The SMA (Subminiature A) connector is one of the most common RF/microwave connectors. This small, threaded connector is used on small cables that won’t be connected and disconnected often. It’s designed for use to 12.4 GHz, but works well at 18, and sometimes even up to 24 GHz. This connector is often used in avionics, radar, and microwave communications.

The SMC (Subminiature C) connector is a small, screw-on version of the SMA. It uses a 10–32 threaded interface and can be used in frequencies up to 10 GHz. This connector is used primarily in microwave environments.

The SMB (Subminiature B) connector is a small version of the SMC connector. It was developed in the 1960s and features a snap-on coupling for fast connections. It features a self-centering outer spring and overlapping dielectric. It is rated from 2–4 GHZ, but can possibly work up to 10 GHz.

The MCX (Micro Coax) connector is a coax RF connector developed in the 1980s. It has a snap-on interface and uses the same inner contact and insulator as the SMB connector but is 30% smaller. It can be used in broadband applications up to 6 GHz. collapse


xDSL, a term that encompasses the broad range of digital subscriber line (DSL) services, offers a low-cost, high-speed data transport option for both individuals and businesses, particularly in areas without... more/see it nowaccess to cable Internet.

xDSL provides data transmission over copper lines, using the local loop, the existing outside-plant telephone cable network that runs right to your home or office. DSL technology is relatively cheap and reliable.

SHDSL can be used effectively in enterprise LAN applications. When interconnecting sites on a corporate campus, buildings and network devices often lie beyond the reach of a standard Ethernet segment. Now you can use existing copper network infrastructure to connect remote LANS across longer distances and at higher speeds than previously thought possible.

There are various forms of DSL technologies, all of which face distance issues. The quality of the signals goes down with increasing distance. The most common will be examined here, including SHDSL, ADSL, and SDSL.

SHDSL (also known as G.SHDSL) (Single-Pair, High-Speed Digital Subscriber Line) transmits data at much higher speeds than older versions of DSL. It enables faster transmission and connections to the Internet over regular copper telephone lines than traditional voice modems can provide. Support of symmetrical data rates makes SHDSL a popular choice for businesses for PBXs, private networks, web hosting, and other services.

Ratified as a standard in 2001, SHDSL combines ADSL and SDSL features for communications over two or four (multiplexed) copper wires. SHDSL provides symmetrical upstream and downstream transmission with rates ranging from 192 kbps to 2.3 Mbps. As a departure from older DSL services designed to provide higher downstream speeds, SHDSL specified higher upstream rates, too. Higher transmission rates of 384 kbps to 4.6 Mbps can be achieved using two to four copper pairs. The distance varies according to the loop rate and noise conditions.

For higher-bandwidth symmetric links, newer G.SHDSL devices for 4-wire applications support 10-Mbps rates at distances up to 1.3 miles (2 km). Equipment for 2-wire deployments can transmit up to 5.7 Mbps at the same distance.

SHDSL (G.SHDSL) is the first DSL standard to be developed from the ground up and to be approved by the International Telecommunication Union (ITU) as a standard for symmetrical digital subscriber lines. It incorporates features of other DSL technologies, such as ADSL and SDS, and is specified in the ITU recommendation G.991.2.

Also approved in 2001, VDSL (Very High Bitrate DSL) as a DSL service allows for downstream/upstream rates up to 52 Mbps/16 Mbps. Extenders for local networks boast 100-Mbps/60-Mbps speeds when communicating at distances up to 500 feet (152.4 m) over a single voice-grade twisted pair. As a broadband solution, VDSL enables the simultaneous transmission of voice, data, and video, including HDTV, video on demand, and high-quality videoconferencing. Depending on the application, you can set VDSL to run symmetrically or asymmetrically.

VDSL2 (Very High Bitrate DSL 2), standardized in 2006, provides a higher bandwidth (up to 30 MHz) and higher symmetrical speeds than VDSL, enabling its use for Triple Play services (data, video, voice) at longer distances. While VDSL2 supports upstream/downstream rates similar to VDSL, at longer distances, the speeds don’t fall off as much as those transmitted with ordinary VDSL equipment.

ADSL (Asymmetric DSL) provides transmission speeds ranging from downstream/upstream rates of 9 Mbps/640 kbps over a relatively short distance to 1.544 Mbps/16 kbps as far away as 18,000 feet. The former speeds are more suited to a business, the latter more to the computing needs of a residential customer.

More bandwidth is usually required for downstream transmissions, such as receiving data from a host computer or downloading multimedia files. ADSL’s asymmetrical nature provides more than sufficient bandwidth for these applications.

The lopsided nature of ADSL is what makes it most likely to be used for high-speed Internet access. And the various speed/distance options available within this range are one more point in ADSL’s favor. Like most DSL services standardized by ANSI as T1.413, ADSL enables you to lease and pay for only the bandwidth you need.

SDSL (Symmetric DSL) represents the two-wire version of HDSL—which is actually symmetric DSL, albeit a four-wire version. SDSL is also known within ANSI as HDSL2.

Essentially offering the same capabilities as HDSL, SDSL offers T1 rates (1.544 Mbps) at ranges up to 10,000 feet and is primarily designed for business applications.


Black Box Explains...Fiber optic ferrule sleeves.

In a fiber optic adapter, the internal ferrule sleeve holds the fiber in place and aligns the filament of one fiber ferrule with its mate. The ferrule sleeve is the... more/see it nowmost expensive component to manufacture in a fiber optic adapter, accounting for approximately 80% of the total adapter cost.

The ferrule alignment sleeves are also the most critical part of a fiber optic connection process. They provide the bridge between one cable’s ferrule and another cable’s ferrule interface. The precision of the ferrule sleeve and its hole determines how well the fibers align, which affects the light signal transmission.

Fiber optic adapters are generally made with ceramic or metal ferrule sleeves. Some adapters also feature ferrule sleeves that are a combination of these materials.

Ceramic ferrule sleeves are more precisely molded and fit close to the fiber ferrule. This precise molding gives the fiber optic connection a lower optical loss. As a general rule, use ceramic ferrule sleeves for critical network connections, such as backbone runs in highly secure networks or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrule sleeves best suit single-mode cable connections.

Ferrule sleeves made of metal, such as bronze ferrules, offer more durability than ceramic sleeves, but they may not offer the same precision alignment as ceramic ferrule sleeves. Drilling an accurate hole through the metal ferrule sleeve can be difficult, and that can result in less accurate fiber alignment. The use of watch-jeweled centering improves alignment. But overall, metal ferrule sleeves are better suited for multimode fiber applications where absolute alignment isn’t crucial.

Black Box Explains...The fully accessorized rack.

After you choose your rack, consider how you’ll set it up and what accessories you might need.

Your rack may need to be secured. A typical rack has about a... more/see it now15"-deep base, providing some stability, but not enough to prevent the rack from tipping if heavy objects are mounted on it. To solve this problem, most rack bases can be bolted to the floor.

You also need to decide how to accommodate standalone equipment, which is not actually rackmounted or bolted to the rack. You can place small devices on a cantilevered shelf such as the RM001, however, you should place heavier items such as monitors on a center-weight shelf such as the RM377.

Small extras, such as Patch Panel Hinge Kits, can make your job easier. These hinges enable you to access the back of a patch panel simply by swinging it out from the rack. They’re particularly useful for racks in hard-to-reach areas.

If you need to mount both 19" and 23" equipment in the same rack, use a 23" rack with 23"-to-19" Rackmount Adapters to fit the 19" devices.

For a neater appearance, you can cover unused spaces in a rack with Filler Panels.

Cable management is also an important consideration. Our Horizontal and Vertical Cable Managers help you to route cables along the sides of racks, between racks, and to the rackmounted equipment. collapse

Results 111-120 of 213 << < 11 12 13 14 15 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.

Black Box 1-877-877-2269 Black Box Network Services