Loading


Content Type (x) > Black Box Explains (x)

Results 111-120 of 205 << < 11 12 13 14 15 > >> 

Black Box Explains...Flexible microphones.

A headset featuring a flexible, swing-away microphone boom is easy to adjust—all you need to do is bend the boom until the microphone is in the correct position. Plus, you... more/see it nowcan easily swing the microphone out of your way if you wish to take a sip of coffee or soda while you’re on the phone. collapse


Black Box Explains...Solid vs. stranded cable.

Solid-conductor cable is designed for backbone and horizontal cable runs. Use it for runs between two wiring closets or from the wiring closet to a wallplate. Solid cable shouldn’t be... more/see it nowbent, flexed, or twisted repeatedly. Its attenuation is lower than that of stranded-conductor cable.

Stranded cable is for use in shorter runs between network interface cards (NICs) and wallplates or between concentrators and patch panels, hubs, and other rackmounted equipment. Stranded-conductor cable is much more flexible than solid-core cable. However, attenuation is higher in stranded-conductor cable, so the total length of stranded cable in your system should be kept to a minimum to reduce signal degradation. collapse


Black Box Explains…CAT6A UTP vs. F/UTP.

CAT6A is currently the cable of choice for future-proofing cabling installations and for 10-GbE networks.

There are two types of CAT6A cable, unshielded (UTP) and shielded (F/UTP). F/UTP denotes foiled/unshielded... more/see it nowtwisted pair and consists of four unshielded twisted pairs encased in an overall foil shield. This is not to be confused with an S/FTP (screened/foiled twisted pair) cable, which has four individually shielded twisted pairs encased in an overall braided shield.

CAT6A UTP
CAT6A UTP is constructed in a certain way to help eliminate crosstalk and ANEXT. (ANEXT is the measurement of the signal coupling between wire pairs in different and adjacent cables.) This includes larger conductors (23 AWG minimum), tighter twists, an extra internal airspace, an internal separator between the pairs, and a thicker outer jacket. These features also increase the outer diameter of the cable, typically to .35 inches in diameter, up from .25 inches for CAT6 cable. This increased diameter creates a greater distance between pairs in adjacent links, thus reducing the between-channel signal coupling. But CAT6A UTP cable is still affected by ANEXT.

According to the standards, ANEXT can be improved by laying CAT6A UTP cable loosely in pathways and raceways with space between the cables. This contrasts to the tightly bundled runs of CAT6/5e cable we are used to. The tight bundles present a worst-case scenario of six cables around one, thus the center cable would be adversely affected by ANEXT. Testing for ANEXT is a complex and time-consuming process where all possible wire-pair combinations are checked. It can take up to 50 minutes to test one link in a bundle of 24 CAT6A UTP cables.

CAT6A F/UTP
CAT6A F/UTP denotes foiled/unshielded twisted pairs and consists of four unshielded twisted pairs encased in an overall foil shield. ANEXT, and the time needed to test for it, can be greatly reduced, if not eliminated completely, by using CAT6A F/UTP. The foil shield acts as a barrier preventing external EMI/RFI from coupling onto the twisted pairs. It also prevents data signals from leaking out of the cable, making the cable more difficult to tap and better for secure installations. Studies also have shown that CAT6A F/UTP cable provides significantly more headroom (as much as 20 dB) than CAT6A UTP in 10-GbE over copper systems.

Bigger isn't always better.
CAT6A UTP cable has an overall allowable diameter of 0.354 inches. CAT6A F/UTP cable has an average outside diameter of 0.265–0.30 inches. That’s smaller than the smallest CAT6A UTP cable. An increase in the outside diameter (O.D.) of 0.1 inch, from 0.25 inches to 0.35 inches for example, represents a 21% increase in fill volume. In general, CAT6A F/UTP cable provides a minimum of 35% more fill capacity that CAT6A UTP cable.

Also because of its large diameter, CAT6A UTP requires a larger bend radius, more pathways, less dense patch panel connections, and extensive ANEXT testing.

CAT6A F/UTP cable is actually easier to handle, requires less bend radius, and uses smaller pathways. In addition, innovations in connector technology has made terminating CAT6A F/UTP cable simpler. In terms of grounding, the requirements for both UTP and F/UTP cable fall under TIA/EIA J-STD-607-A Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications.

The advantages of CAT6A F/UTP vs. UTP
In summary, there are a number of advantages of using CAT6A F/UTP over CAT6A UTP in 10-GbE networks.

1. Shielding eliminates ANEXT and EMI/RFI problems and testing.
2. Data line security is enhanced because of shielding.
3. Lighter, slimmer cable provides higher port density.
4. Smaller outside diameter cable is easier to handle and reduces installation costs.
5. Shielded cable uses less space in conduits.

For more information, see the CAT6A F/UTP vs. UTP: What You Need to Know white paper in the Resources section at blackbox.com. collapse


Black Box Explains...Shielded vs. unshielded cable.

The environment determines whether cable should be shielded or unshielded.

Shielding is the sheath surrounding and protecting the cable wires from electromagnetic leakage and interference. Sources of this electromagnetic activity... more/see it now(EMI)—commonly referred to as noise—include elevator motors, fluorescent lights, generators, air conditioners, and photocopiers. To protect data in areas with high EMI, choose a shielded cable.

Foil is the most basic cable shield, but a copper-braid shield provides more protection. Shielding also protects cables from rodent damage. Use a foil-shielded cable in busy office or retail environments. For industrial environments, you might want to choose a copper-braid shield.

For quiet office environments, choose unshielded cable. collapse


Black Box Explains... PCI buses

A Peripheral Component Interconnect (PCI) Bus enhances both speed and throughput. A PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed... more/see it nowperipherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs. collapse


Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700


850-nm Ethernet Distance
1-GbE
OM3: 1000 m

OM4: 1000 m


10-GbE
OM3: 300 m

OM4: 550 m


40-GbE
OM3: 100 m

OM4: 150 m


100-GbE
OM3: 100 m

OM4: 150 m

collapse


Black Box Explains...Link loss.

Media converters solve the problem of connecting different media types in mixed-media networks. In order to comply with IEEE standards, they implement IEEE data-encoding rules and the Link Integrity Test.

For... more/see it nowa twisted-pair segment, a link is a signal sent by the converters when the cable is in use. If no Link Integrity Test signal is received, the connected device assumes that the link is lost.

With fiber cable, a connected device checks a line by monitoring the Link Integrity Test signal from the converter and the power of the light being received. If the light’s power drops below a certain threshold, the link is lost. In either case, link loss usually results from a broken cable, which is the cause of approximately 70% of all LAN problems.

Link loss is often indicated by an LED on a connected network device. You can also monitor a link with network-management software, such as SNMP, which sends a TRAP (alert) to the management workstation when the link is lost.

Media converters actually function as two separate Multistation Access Units (MAUs). For example, one monitor is a twisted-pair segment and one monitor is a fiber segment. If a fiber cable is broken and the link is lost, a network manager on the twisted-pair end won’t know there’s a problem until users on the fiber side report it.

To solve this problem, Black Box® Modular Media Converters feature a unique Link-Loss capability. This enables the link status on one segment to reflect the link status of the other segment. So if the link is lost on the fiber side, the link is disabled on the UTP segment as well. And the converters will send an SNMP TRAP indicating the loss of link to the management workstation. collapse


Black Box Explains...IEEE 1284

Introduced in 1994, the IEEE 1284 standard addresses data-transfer speeds and distance for parallel interfaces. Standard parallel interfaces support speeds of up to 150 kbps at distances of up to... more/see it now6 feet (1.8 m); IEEE 1284 parallel interfaces can send your data over 100 times faster at up to five times the distance!

Although the Centronics® interface enabled only unidirectional computer-to-peripheral data flow, the IEEE 1284 interface enables bidirectional flow so peripherals can send data to the computer.

The IEEE 1284 standard covers five separate parallel modes, from the original Centronics (with which it’s compatible) to the high-performance Enhanced Parallel Port (EPP) mode. The computer negotiates with the attached device to determine which mode to use. collapse


Black Box Explains...DS-3 and DS-4

Digital signal (DS) speeds are used to classify the capacities of lines and trunks as designated by the Trunk (T) carrier systems. The most well-known T carrier system is the... more/see it nowNorth American T1 standard, which was originally designed to transmit digitized voice signals at 1.544 Mbps (DS-1). T carrier systems now carry digital data as well as voice transmissions.

DS-3 lines offer the functional equivalent of 28 T1 channels, operating at 44.736 Mbps (commonly rounded up to 45 Mbps). These lines handle up to 672 voice conversations and are used in high-speed interconnect and DS cross-connect (DSX) applications.

DS-4 offers 274.176 Mbps transmission—the same as 4032 standard voice channels—and has 168 times the capacity of T1. This performance level is generally used for carrier backbone networks.

Products offering DS-3 and DS-4 functionality comply with T3 and T4 standards, respectively, and with Bellcore GR-139-CORE specifications. collapse


Black Box Explains...How a line driver operates.

Driving data? Better check the transmission.

Line drivers can operate in any of four transmission modes: 4-wire full-duplex, 2-wire full-duplex, 4-wire half-duplex, and 2-wire half-duplex. In fact, most models support more... more/see it nowthan one type of operation.

So how do you know which line driver to use in your application?

The deal with duplexing.
First you must decide if you need half- or full-duplex transmission. In half-duplex transmission, voice or data signals are transmitted in only one direction at a time, In full-duplex operation, voice or data signals are transmitted in both directions at the same time. In both scenarios, the communications path support the full data rate.

The entire bandwidth is available for your transmission in half-duplex mode. In full-duplex mode, however, the bandwidth must be split in two because data travels in both directions simultaneously.

Two wires or not two wires? That is the question.
The second consideration you have is the type of twisted-pair cable you need to complete your data transmissions. Generally you need twisted-pair cable with either two or four wires. Often the type of cabling that’s already installed in a building dictates what kind of a line driver you use. For example, if two twisted pairs of UTP cabling are available, you can use a line driver that operates in 4-wire applications, such as the Short-Haul Modem-B Async or the Line Driver-Dual Handshake models. Otherwise, you might choose a line driver that works for 2-wire applications, such as the Short-Haul Modem-B 2W or the Async 2-Wire Short-Haul Modem.

If you have the capabilities to support both 2- and 4-wire operation in half- or full-duplex mode, we even offer line drivers that support all four types of operation.

As always, if you’re still unsure which operational mode will work for your particular applications, consult our Technical Support experts and they’ll help you make your decision. collapse

Results 111-120 of 205 << < 11 12 13 14 15 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services