Loading


Content Type (x) > Black Box Explains (x)

Results 101-110 of 207 << < 11 12 13 14 15 > >> 

Black Box Explains...Multicasting video over a LAN: Use the right switch.

In KVM extension applications where you want to distribute HD video across a network, you need to understand how it works and what kind of networking equipment to use with... more/see it nowyour extenders.

Think of your network as a river of data with a steady current of data moving smoothly down the channel. All your network users are like tiny tributaries branching off this river, taking only as much water (bandwidth) as they need to process data. When you start to multicast video, data, and audio over the LAN, those streams suddenly become the size of the main river. Each user is then basically flooded with data and it becomes difficult or impossible to do any other tasks. This scenario of sending transmissions to every user on the network is called broadcasting, and it slows down the network to a trickle. There are network protocol methods that alleviate this problem, but it depends on the network switch you use.

Unicast vs. multicasting, and why a typical Layer 2 switch isn’t sufficient.
Unicasting is sending data from one network device to another (point to point); in a typical unicast network, Layer 2 switches easily support these types of communications. But multicasting is transmitting data from one network device to multiple users. When multicasting with Layer 2 switches, all attached devices receive the packets, whether they want them or not. Because a multicast header does NOT have a destination IP address, an average network switch (a Layer 2 switch without supported capabilities) will not know what to do with it. So the switch sends the packet out to every network port on all attached devices. When the client or network interface card (NIC) receives the packet, it analyzes it and discards it if not wanted.

The solution: a Layer 3 switch with IGMPv2 or IGMPv3 and packet forwarding.
Multicasting with Layer 3 switches is much more efficient than with Layer 2 switches because it identifies the multicast packet and sends it only to the intended receivers. A Layer 2 switch sends the multicast packets to every device and, If there are many sources, the network will slow down because of all the traffic. And, without IGMPv2 or IGMPv3 snooping support, the switch can handle only a few devices sending multicasting packets.

Layer 3 switches with IGMP support, however, “know” who wants to receive the multicast packet and who doesn’t. When a receiving device wants to tap into a multicasting stream, it responds to the multicast broadcast with an IGMP report, the equivalent of saying, “I want to connect to this stream.” The report is only sent in the first cycle, initializing the connection between the stream and receiving device. If the device was previously connected to the stream, it sends a grafting request for removing the temporary block on the unicast routing table. The switch can then send the multicast packets to newly connected members of the multicast group. Then, when a device no longer wants to receive the multicast packets, it sends a pruning request to the IGMP-supported switch, which temporarily removes the device from the multicast group and stream.

Therefore, for multicasting, use routers or Layer 3 switches that support the IGMP protocol. Without this support, your network devices will be receiving so many multicasting packets, they will not be able to communicate with other devices using different protocols, such as FTP. Plus, a feature-rich, IGMP-supported Layer 3 switch gives you the bandwidth control needed to send video from multiple sources over a LAN. collapse


Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.
collapse


Black Box Explains...Quick disconnnects.

A quick disconnect enables you to disconnect your headset without disconnecting your call or taking off your headset. This option is expecially convenient when you need to leave your desk... more/see it nowand keep your caller on the line. When you return to your desk, all you need to do is reconnect the plug and you’re talking again. The quick disconnect works well for call centers and busy offices where files aren’t at your desk or when you need to speak to a supervisor. collapse


Black Box Explains...Media converters that are really switches.

A media converter is a device that converts from one media type to another, for instance, from twisted pair to fiber to take advantage of fiber’s greater range. A traditional... more/see it nowmedia converter is a two-port Layer 1 device that performs a simple conversion of only the physical interface. It’s transparent to data and doesn't “see” or manipulate data in any way.

An Ethernet switch can also convert one media type to another, but it also creates a separate collision domain for each switch port, so that each packet is routed only to the destination device, rather than around to multiple devices on a network segment. Because switches are “smarter” than traditional media converters, they enable additional features such as multiple ports and copper ports that autosense for speed and duplex.

Switches are beginning to replace traditional 2-port media converters, leading to some fuzziness in terminology. Small 4- or 6-port Ethernet switches are very commonly called media converters. In fact, anytime you see a “Layer 2” media converter or a media converter with more than two ports, it’s really a small Ethernet switch. collapse


Black Box Explains...Industrial Ethernet (Ethernet/IP) and IP-rated connectors.

Ethernet technology is coming to the factory floor. Once limited to office environments, Ethernet has proven to be a robust alternative to the RS-232 interface traditionally used with industrial devices... more/see it nowsuch as programmable logic controllers. Ethernet brings speed, versatility, and cost savings to industrial environments.

The requirements of industrial environments are different than offices, so there are industrial Ethernet standards. The most common is the Ethernet/Industrial Protocol (Ethernet/IP) standard, usually called Industrial Ethernet. Industrial Ethernet adapts ordinary, off-the-shelf IEEE 802.3 Ethernet communication chips and physical media to industrial applications.

The Ingress Protection (IP) ratings developed by the European Committee for Electrotechnical Standardization (CENELEC) specify the environmental protection an enclosure provides.

An IP rating consists of two or three numbers. The first number refers to protection from solid objects or materials; the second number refers to protection from liquids; and the third number, commonly omitted from the rating, refers to protection against mechanical impacts. An IP67 rating means that a connector is totally protected from dust and from the effects of immersion in 5.9 inches (15 cm) to 3.2 feet (1 m) of water for 30 minutes.

Because office-grade RJ-45 connectors do not stand up to an industrial environment, the Ethernet/IP standard calls for sealed industrial RJ-45 connectors that meet an IP67 standard, meaning the connectors are sealed against dust and water. collapse


Black Box Explains...802.3ah.

802.3ah, also called Ethernet in the First Mile (EFM), is a new Ethernet standard designed to compete with standards such as DSL and cable modem in delivering broadband access to... more/see it nowhomes.

The 802.3ah specification covers point-to-point copper, point-to-point fiber, and point-to-multipoint fiber.

Ethernet in the First Mile over Copper (EFMC)
This point-to-point specification for copper wire takes advantage of DSL technology to send Ethernet over one pair of copper wires at 10 Mbps for 750 meters or 2 Mbps for 2700 meters.

Ethernet in the First Mile over Fiber (EFMF)
This point-to-point specification for single-mode, single-strand or single-mode, duplex fiber sends Ethernet at speeds of 100 Mbps or 1 Gbps up to 10 kilometers. It includes an optional extended temperature range from -40 to 185° F (-40 to 85° C) for outdoor use.

Ethernet in the First Mile over Passive Optical Networks (EPON)
This point-to-multipoint specification for fiber uses an optical splitter to divide the Ethernet signal into separate strands that go to individual subscribers. This enables an ISP to link many subscribers to a single uplink fiber without using active components in the field.

802.3ah includes the OAM specification, which provides utilities for monitoring and troubleshooting Ethernet links remotely, a capability vital for carrier-class deployment. OAM protocols address discovery, link monitoring, remote fault signaling, and remote loopback.

OAM is managed in-band but takes up very little bandwidth so network performance is not noticeably affected. OAM itself is not affected by VLANs or port-access restrictions. collapse


Black Box Explains...Designing your wireless network.



Setting up wireless devices that belong to the 802.11 family is relatively simple, but you do have to pay attention to a few simple factors.


Ad-hoc or infrastructure... more/see it nowmode?

The 802.11 wireless standards support two basic configurations: ad-hoc mode and infrastructure mode.


In ad-hoc mode, wireless user devices such as laptop computers and PDAs communicate directly with each other in a peer-to-peer manner without the benefit of access points.


Ad-hoc mode is generally used to form very small spontaneous networks. For instance, with ad-hoc mode, laptop users in a meeting can quickly establish a small network to share files.


Infrastructure mode uses wireless access points to enable wireless devices to communicate with each other and with your wired network. Most networks use infrastructure mode.


The basic components of infrastructure mode networks include:

  • The radios embedded or installed within the wireless devices themselves. Many notebook computers and other Wi-Fi-compliant mobile devices, such as PDAs, come with the transmitters built in. But for others, you need to install a card-type device to enable wireless communications. Desktop PCs may also need an ISA or a PCI bus adapter to enable the cards to work.
  • The access point, which acts as a base station that relays signals between the 802.11 devices.
One or many access points?

Access points are standalone hardware devices that provide a central point of communication for your wireless users. How many you need in your application depends on the number of users and the amount of bandwidth required by each user. Bandwidth is shared, so if your network has many users who routinely send data-heavy multimedia files, additional access points may be required to accommodate the demand.


A small-office network with fewer than 15 users may need just 1 access point. Larger networks require multiple points. If the hardware supports it, you can overlap coverage areas to allow users to roam between cells without any break in network coverage. A user’s wireless device picks up a signal beacon from the strongest access point to maintain seamless coverage.


How many access points to use also depends on your operating environment and the required range. Radio propagation can be affected by walls and electrical interference that can cause signal reflection and fading. If you’re linking mobile users indoors-where walls and other obstructions impede the radiated signal-the typical maximum range is 150 feet. Outdoors, you can get greater WLAN range-up to 2000 feet (depending on your antenna type) where there’s a clear line of sight!


For optimal speed and range, install your wireless access point several feet above the floor or ground and away from metal equipment or large appliances that may emit interference.


Battle of the bands.

In addition to sharing bandwidth, users also share a band. Most IEEE 802.11 or 802.11b devices function in the 2.4-2.4835-GHz band. But these frequencies are often congested, so you may want to use devices that take advantage of the IEEE 802.11a 5.725-5.825-GHz band.


No matter what frequency you use, you’ll want to isolate your users from outsiders using the same frequency. To do this, assign your users a network identifier, such as an Extended Service Set Identifier (ESSID), as well as distinct channels.


Web and wired network links.

The access point links your wireless network to your wired network, enabling your wireless users to access shared data resources and devices across your LAN enterprise. Some access points even feature capabilities for routing traffic in one or both directions between a wired and wireless network.


For Internet access, connect a broadband router with an access point to an Internet connection over a broadband service such as DSL, cable modem, or satellite.


For connecting network printers, you can dedicate a computer to act as a print server or add a wireless print server device; this enables those on your wireless network to share printers.


When to use external antennas.

If you plan to install access points, you can boost your signal considerably by adding external antennas. Various mounting configurations and high- and low-gain options are available.


You can also use add-on antennas to connect nodes where the topology doesn’t allow for a clear signal between access points. Or use them to link multiple LANs located far apart.


Additional external antennas are also useful to help overcome the effects of multipath propagation in which a signal takes different paths and confuses the receiver. It’s also helpful to deploy antennas that propagate the signal in a way that fits the environment. For instance, for a long, narrow corridor, use an antenna that focuses the RF pattern in one direction instead of one that radiates the signal in all directions.


Plan ahead with a site survey.

A site survey done ahead of time to plot where the signal is the strongest can help you identify problem areas and avoid dead spots where coverage isn’t up to par or is unreliable. For this, building blueprints are helpful in revealing potential obstructions that you might not see in your physical site walkthrough.


To field test for a clear signal path, attach an antenna to an access point or laptop acting as the transmitter at one end. Attach another antenna to a wireless device acting as a receiver at the other end. Then check for interference using RF test equipment (such as a wireless spectrum analyzer) and determine whether vertical or horizontal polarization will work best.


Need help doing this? Call us. We even offer a Site Survey Kit that has a variety of antennas included. Great for installers, the kit enables you to test a variety of antennas in the field before placing a larger antenna order.

collapse


Black Box Explains... Using fiber optics for KVM extension.

If you‘re sending KVM signals between buildings for an extended distance, in areas supplied by different power sources, in an electrically noisy environment, or where data security is a big... more/see it nowconcern, you need to use a fiber optic-based KVM extender.

Optical fiber is an ideal transmission medium not only for backbone and horizontal connection, but also for workstation-to-backracked CPU or server links. It works very well in applications where you need to transfer large, bandwidth-consuming data files over long distances, and where you require immunity from electrical interference or data theft.

The choice for extraordinary reach.
Fiber doesn’t have the 100-meter (328-ft.) distance limitation that UTP copper without a booster does. Fiber distances can range from 300 meters (984.2 ft.) to 70 kilometers (24.8 mi.), depending on the cable, wavelength, and network. With fiber-based KVM extenders, the transmitter converts conventional data signals into a modulated light beam, then transports the beam via the fiber to a receiver, which converts the light back into electrical signals.

Many newer fiber-based KVM extenders support both analog and digital transmission. Often, they work by digitizing video output from a local CPU, then sending it across fiber link to a remote unit, which converts it back to the original analog signal. In many cases, one fiber of the fiber pair transmits monitor video serially and the second fiber sends remote mouse and keyboard information back to the local CPU.

The choice for ensuring signal integrity.
Because fiber is made of glass, which is an insulator, no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. This is why fiber-based KVM extenders are beneficial to users in process control, engineering, utility, and factory automation applications. The users need to keep critical information safe and secure off the factory floor but be able to access that data from workstations and control consoles within the harsh environments. Plus, fiber is also less susceptible to temperature fluctuations than copper is, and it can be submerged ?in water.

The choice for greater signal fidelity.
Fiber-based KVM extenders can carry more information with greater fidelity than copper-based ones can. For this reason, they’re ideal for high-data-rate systems in which multimedia workstations are used.

Newer KVM extenders enable you to send both DVI and keyboard and mouse signals over the same fiber cable, transmitting video digitally for zero signal loss. This way, you can get HD-quality resolution even at very long distances from the source. Users in university or government R&D, broadcasting, healthcare—basically anyone who depends on detailed image rendering—can benefit from this technology.

The choice for data security.
Plus, your data is safe when using fiber to connect a workstation with a CPU or server under lock and key. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Many IT managers in military, government, finance, and healthcare choose fiber-based KVM extenders for this very reason. Plus corporations, aware of rising data privacy concerns over customer billing information and the need to protect intellectual property, use this type of extension technology in their offices, too.

Considerations for fiber-based KVM extension.
Before selecting a fiber-based KVM extender, it’s important to know the limitations of your system. You need to know where couplers, links, interconnect equipment, and other devices are going to be placed. If it’s a longer run, you have to determine whether multimode or single-mode fiber cable is needed.

The most important consideration in planning cabling for fiber-based KVM extension is the power budget specification of device connection. The receiver at the remote end has to receive the light signal at a certain level. This value, called the loss budget, tells you the amount of loss in decibels (dB) that can be present in the link between the two devices before the units fail to perform properly.

Specifically, this value takes the fiber type (multimode or single-mode) and wavelength you intend to use—and the amount of expected in-line attenuation—into consideration. This is the decrease of signal strength as it travels through the fiber cable. In the budget loss calculation, you also have to account for splices, patch panels, and connectors, where additional dBs may lost in the entire end-to-end fiber extension. If the measured loss is less than the number calculated by your loss budget, your installation is good.

Testers are available to determine if the fiber cabling supports your intended application. You can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget to determine your link loss margin.

Also, in some instances, particularly when using single-mode fiber to drive the signal farther, the signal may be too strong between connected devices. This causes the light signal to reflect back down the fiber cable, which can corrupt data, result in a faulty transmission, and even damage equipment. To prevent this, use fiber attenuators. They’re used with ?single-mode fiber optic devices and cable to filter the strength of the fiber optic signal from the transmitter’s LED output so it doesn’t overwhelm the receiver. Depending on the type of attenuator attached to the devices at each end of the link, you can diminish the strength of the light signal a variable amount by a certain number of decibels.

Need help calculating your budget loss? Call our FREE Tech Support. If necessary, they can even recommend a fusion splicing fiber kit, a fiber tester, or a signal attenuator for your specific requirements. collapse


Black Box Explains...16850 UART.

The 16850 Universal Asynchronous Receiver/Transmitter (UART) features a 128-byte First In First Out (FIFO) buffer. When implemented with the appropriate onboard drivers and receivers, it enables your onboard serial ports... more/see it nowto achieve sustained data rates of up to 460.8 kbps.

The 16850 UART includes automatic handshaking (RTS/CTS) and automatic RS-485 line control. It also features external clocking for isochronous applications, a performance enhancement not offered by earlier UARTs. collapse


Black Box Explains…Wizard.NET

One software solution to rule them all.
Wizard.NET is a professional enterprise management suite that delivers total IP device control, management, and connectivity. Black Box KVM over IP (KVMoIP) devices provide... more/see it nowthe ability to control large numbers of host computers from remote locations. When controlling larger groups of dispersed computers using numerous KVMoIP devices, the major challenge becomes one of management—retaining active control over a complex mix of devices, host computers, and registered users. Wizard.NET was developed as a common interface to help you remotely manage any number of KVMoIP devices together with all of their connected host computers and the access rights of the users.

Wizard.NET is delivered as a software solution only, and operates as a server application running on a system that can be completely separate from any of the KVMoIP devices?—?it merely requires an IP network or Internet connection. Wizard.NET uses an intuitive HTML user interface, which means that registered users can access and control it remotely using a standard Web browser. Like all Wizard KVMoIP products, Wizard.NET employs high specification security techniques to ensure that only authorized users may gain access.

Wizard.NET has two main modules, the manager and the connector. The manager module is accessible only to managers and administrators. It is where the details about all connected devices, hosts, and users are configured and stored. The connector module can be used by registered users to enable quick access to all of the targets for which they have access rights. Targets may be devices, hosts, or device groups as appropriate.

To ensure maximum security, Wizard.NET does not retain any passwords within its database for the devices that it controls. Instead, a valid password is used once only to gain access to each device during the “acquire” stage, when Wizard.NET establishes a Secure Ticket with the device. In all subsequent accesses to each device, the relevant secure ticket is used to gain access. collapse

Results 101-110 of 207 << < 11 12 13 14 15 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services