Loading


Content Type (x) > Black Box Explains (x)

Results 11-20 of 207 < 1 2 3 4 5 > >> 

Black Box Explains...USB.

What is USB?
Universal Serial Bus (USB) is a royalty-free bus specification developed in the 1990s by leading manufacturers in the PC and telephony industries to support plug-and-play peripheral connections. USB... more/see it nowhas standardized how peripherals, such as keyboards, disk drivers, cameras, printers, and hubs) are connected to computers.

USB offers increased bandwidth, isochronous and asynchronous data transfer, and lower cost than older input/output ports. Designed to consolidate the cable clutter associated with multiple peripherals and ports, USB supports all types of computer- and telephone-related devices.

Universal Serial Bus (USB) USB detects and configures the new devices instantly.
Before USB, adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect digital printers, recorders, backup drives, and other devices in seconds. USB detects and configures the new devices instantly.

Benefits of USB.
• USB is “universal.” Almost every device today has a USB port of some type.
• Convenient plug-and-play connections. No powering down. No rebooting.
• Power. USB supplies power so you don’t have to worry about adding power. The A socket supplies the power.
• Speed. USB is fast and getting faster. The original USB 1.0 had a data rate of 1.5 Mbps. USB 3.0 has a data rate of 4.8 Gbps.

USB Standards

USB 1.1
USB 1.1, introduced in 1995, is the original USB standard. It has two data rates: 12 Mbps (Full-Speed) for devices such as disk drives that need high-speed throughput and 1.5 Mbps (Low-Speed) for devices such as joysticks that need much lower bandwidth.

USB 2.0
In 2002, USB 2.0, (High-Speed) was introduced. This version is backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1.

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as printers, cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously.

USB 3.0
USB 3.0 (SuperSpeed) (2008) provides vast improvements over USB 2.0. USB 3.0 has speeds up to 5 Gbps, nearly ten times that of USB 2.0. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus.

USB 3.0 is designed to be backward compatible with USB 2.0.

USB 3.0 Connector
USB 3.0 has a flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors. Type A plugs from USB 3.0 and 2.0 are designed to interoperate. USB 3.0 Type B plugs are larger than USB 2.0 plugs. USB 2.0 Type B plugs can be inserted into USB 3.0 receptacles, but the opposite is not possible.

USB 3.0 Cable
The USB 3.0 cable contains nine wires—four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 Power
USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It also conserves power too compared to USB 2.0, which uses power when the cable isn’t being used.

USB 3.1
Released in 2013, is called SuperSpeed USB 10 Gbps. There are three main differentiators to USB 3.1. It doubles the data rate from 5 Gbps to 10 Gbps. It will use the new, under-development Type C connector, which is far smaller and designed for use with everything from laptops to mobile phones. The Type C connector is being touted as a single-cable solution for audio, video, data, and power. It will also have a reversible plug orientation. Lastly, will have bidirectional power delivery of up to 100 watts and power auto-negotiation. It is backward compatible with USB 3.0 and 2.0, but an adapter is needed for the physical connection.

Transmission Rates
USB 3.0: 4.8 Gbps
USB 2.0: 480 Mbps
USB 1.1: 12 Mbps

Cable Length/Node
5 meters (3 meters for 3.0 devices requiring higher speeds).
Devices/bus: 127
Tier/bus: 5
collapse


Black Box Explains…How to keep cabinets cool.

Networking equipment—especially servers—generates a lot of heat in a relatively small area. Today’s servers are smaller and have faster CPUs than ever. Because most of the power used by these... more/see it nowdevices is dissipated into the air as heat, they can really strain the cooling capacity of your data center. The components housed in a medium-sized data center can easily generate enough heat to heat a house in the dead of winter!

So cool you must, because when network components become hot, they're prone to failure and a shortened lifespan.

Damage caused by heat is not always immediately evident as a catastrophic meltdown—signs of heat damage include node crashes and hardware failures that can happen over a period of weeks or even months, leading to chronic downtime.

Computer rooms generally have special equipment such as high-capacity air conditioning and raised-floor cooling systems to meet their high cooling requirements. However, it's also important to ensure that individual cabinets used for network equipment provide adequate ventilation. Even if your data center is cool, the inside of a cabinet may overheat if air distribution is inadequate. Just cranking up the air conditioning is not the solution.

The temperature inside a cabinet is affected by many variables, including door perforations, cabinet size, and the types of components housed within the cabinet.

The most direct way to cool network equipment is to ensure adequate airflow. The goal is to ensure that every server, every router, every switch has the necessary amount of air no matter how high or low it is in the cabinet.

It takes a certain volume of air to cool a device to within its ideal temperature range. Equipment manufacturers provide very little guidance about how to do this; however, there are some very basic methods you can use to maximize the ventilation within your cabinets.

Open it up.
Most major server manufacturers recommend that the front and back cabinet doors have at least 63% open area for airflow. You can achieve this by either removing cabinet doors altogether or by buying cabinets that have perforated doors.

Because most servers, as well as other network devices, are equipped with internal fans, open or perforated doors may be the only ventilation you need as long as your data center has enough air conditioning to dissipate the heat load.

You may also want to choose cabinets with side panels to keep the air within each cabinet from mixing with hot air from an adjacent cabinet.

Equipment placement.
Don't overload the cabinet by trying to fit in too many servers—75% to 80% of capacity is about right. Leave at least 1U of space between rows of servers for front-to-back ventilation. Maintain at least a 1.5" clearance between equipment and the front and back of the cabinet. And finally, ensure all unused rack space is closed off with blank panels to prevent recirculation of warm air.

Fans and fan placement.
You can increase ventilation even more by installing fans to actively circulate air through cabinets. The most common cabinet fans are top-mounted fan panels that pull air from the bottom of the cabinet or through the doors. For spot cooling, use a fan or fan panel that mounts inside the cabinet.

For very tightly-packed cabinets, choose an enclosure blower—a specialized high-speed fan that mounts in the bottom of the cabinet to pull a column of cool air from the floor across the front of your servers or other equipment. An enclosure blower requires a solid or partially vented front door with adequate space—usually at least 4 inches—between the front of your equipment and the cabinet door for air movement.

When using fans to cool a cabinet, keep in mind that cooling the outside of a component doesn't necessarily cool its inside. The idea is to be sure that the air circulates where your equipment's air intake is. Also, beware of installing fans within the cabinets that work against the small fans in your equipment and overwhelm them.

Temperature monitoring.
To ensure that your components are operating within their approved temperature range, it’s important to monitor conditions within your cabinets.

The most direct method to monitor cabinet temperature is to put a thermometer into your cabinet and check it regularly. This simple and inexpensive method can work well for for small installations, but it does have its drawbacks—a cabinet thermometer can’t tell you what the temperature inside individual components is, it can’t raise the alarm if the temperature goes out of range, and it must be checked manually.

Another simple and inexpensive addition to a cabinet is a thermostat that automatically turns on a fan when the cabinet's temperature exceeds a predetermined limit.

Many network devices come with SNMP or IP-addressable internal temperature sensors to tell you what the internal temperature of the component is. This is the preferred temperature monitoring method because these sensors are inside your components where the temperature really counts. Plus you can monitor them from your desktop—they’ll send you an alert if there’s a problem.

There are also cabinet temperature sensors that can alert you over your network. These sensors are often built into another device such as a PDA but only monitor cabinet temperature, not the temperature inside individual devices. However, these sensors can be a valuable addition to your cooling plan, especially for older devices that don't have internal sensors.

The future of cabinet cooling.
Very high-density data centers filled with blade servers present an extreme cooling challenge, causing some IT managers to resort to liquid-cooled cabinets. They’re still fairly new and tend to make IT managers nervous at the prospect of liquids near electronics, but their high efficiency makes it likely that these liquid-cooled systems will become more prevalent.

It’s easy, really.
Keeping your data and server cabinets cool doesn't have to be complicated. Just remember not to overcrowd the cabinets, be sure to provide adequate ventilation, and always monitor conditions within your cabinets. collapse


Black Box Explains...KVM tray technology.

KVM tray technology. What we do that others don’t.
From the solid construction of our KVM trays, to unique features like LEDs on the ?front panel and integrated KVM switching, Black Box’s... more/see it nowKVM trays are miles ahead of the competition.

Nothing reduces clutter in a server room like KVM trays that are 1- or 2U high, and ?mount in a cabinet or rack. Here are some of the features that set our KVM trays apart.

TFT LCD support.
This type of monitor uses thin-film transistor (TFT) technology to improve image quality, resulting in higher resolutions, better image contrast, and addressability. All our KVM trays support TFT LCD panel monitors.

Viewing angles.
The screens on our KVM trays are viewable from nearly any angle. Because of the size of our screens, from 15" to 19", viewing angles vary from 140° x 120° all the way up to 160° x 160°, so you don’t always have to be standing directly in front of the monitor to see what’s happening on it.

Universal rail.
Our ServTray Complete family of KVM trays (KVT417A-R2, etc.) has adjustable length instead of a variety of rear bracket sites. This universal rail rear bracket size fits racks with depths of 23.7" (60.2 cm) to 45.3" (115 cm). This simplifies ordering for you!

Dual rail technology.
This KVM tray technology enables the monitor drawer and the keyboard/mouse drawer to move independently of each other. It makes it easy to leave the monitor visible even when a server cabinet is closed and the keyboard/mouse drawer is fully retracted. Black Box has added switching controls to the monitor bezel that can be used to control an attached switch without pulling open the keyboard/mouse drawer for even more space-saving benefits.

Additionally, the dual rails provide a great monitoring environment without disturbing your cooling system.

You asked for it.
Our latest KVM trays, the ServView V KVM Drawer and ServView V KVM Drawer with Widescreen (KVT517A, etc.) were designed based on feedback we have received from some of our customers.

On the front panel of the tray, there is an LED panel, which helps you locate the ?drawer when it’s closed in a darkened data center. The tray only takes up 1U of rack space, and it features the dual rail technology described earlier.

We added front-panel controls for switching, so if you choose a model with an embedded KVM switch, you can use the buttons on the monitor bezel without pulling out the keyboard. Additionally, the top of the keyboard tray features a hideaway connection for USB wireless devices, such as RF- or Bluetooth® supported keyboards and mice. You can wirelessly access your attached targets, even without opening the cabinet door!

Another feature is the front-panel USB port, which provides crash cart access. If your keyboard or GlidePoint® mouse quit on you, simply use this port to attach a passthrough pointing device.

Finally, the widescreen version supports 1920 x 1080 resolutions and DVI connections — two firsts in the data center. collapse


Black Box Explains...Solid vs. stranded cable.

Solid-conductor cable is designed for backbone and horizontal cable runs. Use it for runs between two wiring closets or from the wiring closet to a wallplate. Solid cable shouldn’t be... more/see it nowbent, flexed, or twisted repeatedly. Its attenuation is lower than that of stranded-conductor cable.

Stranded cable is for use in shorter runs between network interface cards (NICs) and wallplates or between concentrators and patch panels, hubs, and other rackmounted equipment. Stranded-conductor cable is much more flexible than solid-core cable. However, attenuation is higher in stranded-conductor cable, so the total length of stranded cable in your system should be kept to a minimum to reduce signal degradation. collapse


Black Box Explains... Spread Spectrum wireless technology.

Frequency-Hopping Spread Spectrum wireless communication provides error-free transmission, top security, and high levels of throughput without the need for an FCC site license. The key to Spread Spectrum is a... more/see it nowfrequency-hopping transceiver.

Narrow-band frequency hoppers use a predefined algorithm to maintain synchronization and high throughput between master and remote modems. They achieve this by continually switching or “hopping” from one transmission frequency to another throughout the Spread Spectrum band. The sequence of frequencies is very difficult to predict and thus nearly impossible to eavesdrop on or jam. If interference is encountered at any particular frequency, the built-in error correction detects it and resends the data packet at the next frequency hop. Because EMI/RFI interference rarely affects the entire available bandwidth, and each frequency hop is at least 6 MHz, the radio transmitter has access to as many as 100 frequencies within the spectrum to avoid interference and ensure that data gets through. collapse


Black Box Explains... Advantages of the MicroRACK system.

• Midplane architecture—Separate front and rear cards make changing interfaces easy.
• Multiple functions—Supports line drivers, interface converters, fiber modems, CSU/DSUs, and synchronous modem eliminators.
• Hot swappable—MicroRACK Cards can be replaced... more/see it nowwithout powering down, so you cut your network’s downtime.
• Two-, four-, and eight-port MicroRACKs—available for smaller or desktop installations. They’re just right for tight spaces that can’t accommodate a full-sized (16-port) rack.
• Optional dual cards—Some Mini Driver Cards have two drivers in one card. One MicroRACK chassis can hold up to 32 Mini Drivers!
• All standard connections available—DB25, RJ-11, RJ-45, fiber, V.35.
• Choose you own power supply—120–240 VAC, 12 VDC, 24 VDC, or 48 VDC. collapse


Black Box Explains... Guidelines for choosing fiber optic cable.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. It’s favored for applications that... more/see it nowneed high bandwidth, long distances, and complete immunity to electrical interference.

It’s ideal for high-data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances.

Fiber offers the following advantages:

Greater bandwidth—Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase.

Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber and many CATV companies are converting to fiber.

Low attenuation and greater distance—Because the fiber optic signal is made of light, very little signal loss occurs during transmission, and data can move at higher speeds and greater distances. Fiber does not have the 100-meter (328-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters (984.2 ft.) to 40 kilometers (24.8 mi.), depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.

Security—Your data is safe with fiber cable. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.

Immunity and reliability—Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The core is made of glass, which is an insulator, so no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.

Design—Fiber is lightweight, thin, and more durable than copper cable. Plus, fiber optic cable has pulling specifications that are up to 10 times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper, advancements in connectors are making termination easier. In addition, fiber is actually easier to test than copper cable.

Migration—The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.

Standards—TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). An addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet (10-GbE) standard.

Costs—The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.

Types of fiber cable and standards.

Multimode, 50- and 62.5-micron cable—Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be used for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable—Single-mode cable has a small 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber. collapse


Black Box Explains... Using fiber optics for KVM extension.

If you‘re sending KVM signals between buildings for an extended distance, in areas supplied by different power sources, in an electrically noisy environment, or where data security is a big... more/see it nowconcern, you need to use a fiber optic-based KVM extender.

Optical fiber is an ideal transmission medium not only for backbone and horizontal connection, but also for workstation-to-backracked CPU or server links. It works very well in applications where you need to transfer large, bandwidth-consuming data files over long distances, and where you require immunity from electrical interference or data theft.

The choice for extraordinary reach.
Fiber doesn’t have the 100-meter (328-ft.) distance limitation that UTP copper without a booster does. Fiber distances can range from 300 meters (984.2 ft.) to 70 kilometers (24.8 mi.), depending on the cable, wavelength, and network. With fiber-based KVM extenders, the transmitter converts conventional data signals into a modulated light beam, then transports the beam via the fiber to a receiver, which converts the light back into electrical signals.

Many newer fiber-based KVM extenders support both analog and digital transmission. Often, they work by digitizing video output from a local CPU, then sending it across fiber link to a remote unit, which converts it back to the original analog signal. In many cases, one fiber of the fiber pair transmits monitor video serially and the second fiber sends remote mouse and keyboard information back to the local CPU.

The choice for ensuring signal integrity.
Because fiber is made of glass, which is an insulator, no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. This is why fiber-based KVM extenders are beneficial to users in process control, engineering, utility, and factory automation applications. The users need to keep critical information safe and secure off the factory floor but be able to access that data from workstations and control consoles within the harsh environments. Plus, fiber is also less susceptible to temperature fluctuations than copper is, and it can be submerged ?in water.

The choice for greater signal fidelity.
Fiber-based KVM extenders can carry more information with greater fidelity than copper-based ones can. For this reason, they’re ideal for high-data-rate systems in which multimedia workstations are used.

Newer KVM extenders enable you to send both DVI and keyboard and mouse signals over the same fiber cable, transmitting video digitally for zero signal loss. This way, you can get HD-quality resolution even at very long distances from the source. Users in university or government R&D, broadcasting, healthcare—basically anyone who depends on detailed image rendering—can benefit from this technology.

The choice for data security.
Plus, your data is safe when using fiber to connect a workstation with a CPU or server under lock and key. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Many IT managers in military, government, finance, and healthcare choose fiber-based KVM extenders for this very reason. Plus corporations, aware of rising data privacy concerns over customer billing information and the need to protect intellectual property, use this type of extension technology in their offices, too.

Considerations for fiber-based KVM extension.
Before selecting a fiber-based KVM extender, it’s important to know the limitations of your system. You need to know where couplers, links, interconnect equipment, and other devices are going to be placed. If it’s a longer run, you have to determine whether multimode or single-mode fiber cable is needed.

The most important consideration in planning cabling for fiber-based KVM extension is the power budget specification of device connection. The receiver at the remote end has to receive the light signal at a certain level. This value, called the loss budget, tells you the amount of loss in decibels (dB) that can be present in the link between the two devices before the units fail to perform properly.

Specifically, this value takes the fiber type (multimode or single-mode) and wavelength you intend to use—and the amount of expected in-line attenuation—into consideration. This is the decrease of signal strength as it travels through the fiber cable. In the budget loss calculation, you also have to account for splices, patch panels, and connectors, where additional dBs may lost in the entire end-to-end fiber extension. If the measured loss is less than the number calculated by your loss budget, your installation is good.

Testers are available to determine if the fiber cabling supports your intended application. You can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget to determine your link loss margin.

Also, in some instances, particularly when using single-mode fiber to drive the signal farther, the signal may be too strong between connected devices. This causes the light signal to reflect back down the fiber cable, which can corrupt data, result in a faulty transmission, and even damage equipment. To prevent this, use fiber attenuators. They’re used with ?single-mode fiber optic devices and cable to filter the strength of the fiber optic signal from the transmitter’s LED output so it doesn’t overwhelm the receiver. Depending on the type of attenuator attached to the devices at each end of the link, you can diminish the strength of the light signal a variable amount by a certain number of decibels.

Need help calculating your budget loss? Call our FREE Tech Support. If necessary, they can even recommend a fusion splicing fiber kit, a fiber tester, or a signal attenuator for your specific requirements. collapse


Black Box Explains... ServSwitch Multi and audio cable.

Get more out of your ServSwitch Multi. Add audio cable, a set of speakers, and a microphone to each CPU. Audio cable turns your ServSwitch Multi into the ideal system... more/see it nowfor education, training, retail, medical, and multimedia office environments.

Audio cable isn’t just for the ServSwitch Multi either. You can also use it with servers that give off audible alarms.

So even if you don’t have audio equipment now—plan ahead. When you’re ready to add audio equipment, just plug in our audio cable. collapse


Black Box Explains... Fan-out kits.

Furcating is the process of adding protective tubing to each fiber within a loose-tube cable. It can be a headache-inducing task if you don’t have the right tools. If you... more/see it nowbend the cable or buffer tubes past their recommended bend radius, or if you allow them to kink, you’ll end up with substandard cable connections and splices that can break down over time. And, if the cable is outdoors, it can become exposed to the elements. The end result: a damaged cable without optimal transmission performance.

That’s why a fan-out kit is an absolute must during furcation. These kits enable you to branch out the fragile fiber strands from a buffer tube into protective tubing so you can add a connector. And, you can do it without using splicing hardware, trays, and pigtails.

To separate the fibers, use the kit’s fan-out assembly, which is color-coded to match the fiber color scheme. The assembly protects the cable’s bend radius. It also eliminates excessive strain on the fibers by isolating them from tensile forces.

Several types of fan-out kits are available for both indoor and outdoor cross-connects. The outdoor kits include components that compensate for wider temperature fluctuations. Some kits are used to terminate loose-tube cables with 6 or 12 fibers per buffer tube. Others enable you to furcate and terminate more than 200 loose-tube cable fibers, sealing the cable sheath and providing a moisture barrier at the point of termination. These kits require no additional hardware.

Although it’s recommended that you terminate loose-tube cable at a patch panel, that might not always be possible. For this, there are “spider“ type fan-out kits, which affix a stronger tubing to the bare fiber. The tubing is typically multilayered, consisting of a FEP inner tube that holds the individual fiber, an aramid yarn strength member, and an outer protective PVC jacket. Once you strip back the cable jacket, you thread the fibers into the fan-out inserts. collapse

Results 11-20 of 207 < 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services