Loading


Content Type (x) > Black Box Explains (x)

Results 11-20 of 212 < 1 2 3 4 5 > >> 

Black Box Explains...RS-232.

RS-232, also known as RS-232C and TIA/EIA-232-E, is a group of electrical, functional, and mechanical specifications for serial interfaces between computers, terminals, and peripherals. The RS-232 standard was developed by... more/see it nowthe Electrical Industries Association (EIA), and defines requirements for connecting data communications equipment (DCE)—modems, converters, etc.—and data terminal equipment (DTE)—computers, controllers, etc.) devices. RS-232 transmits data at speeds up to 115 Kbps and over distances up to 50 feet (15.2 m).

The standard, which is functionally equivalent to ITU V.24/V.28, specifies the workings of the interface, circuitry, and connector pinning. Both sync and async binary data transmission fall under RS-232. Although RS-232 is sometimes still used to transmit data from PCs to peripheral devices, the most common uses today are for network console ports and for industrial devices.

Even though RS-232 is a “standard,” you can’t necessarily expect seamless communication between two RS-232 devices. Why? Because different devices have different circuitry or pinning, and different wires may be designated to perform different functions.

The typical RS-232 connector is DB25, but some PCs and other data communication devices have DB9 connectors and many newer devices have RJ-45 RS-232 ports. To connect 9-pin PC ports or RJ-45 to devices with 25-pin connectors, you will require a simple adapter cable. collapse


Black Box Explains...Type 1 vs. Type 6 Cable

Type 1 Cable is made of solid wire, typically 22 AWG bare copper. It has braided shielding around each pair. It’s recommended for long runs in walls, conduits, etc.

Type 6... more/see it nowCable is typically made of 26 AWG stranded copper and has one shield around both pairs. It’s lighter and more flexible than Type 1 Cable and has a better “look.” It’s recommended for use in office environments. collapse


Black Box Explains...Flexible microphones.

A headset featuring a flexible, swing-away microphone boom is easy to adjust—all you need to do is bend the boom until the microphone is in the correct position. Plus, you... more/see it nowcan easily swing the microphone out of your way if you wish to take a sip of coffee or soda while you’re on the phone. collapse


Black Box Explains...Fiber optic ferrule sleeves.

In a fiber optic adapter, the internal ferrule sleeve holds the fiber in place and aligns the filament of one fiber ferrule with its mate. The ferrule sleeve is the... more/see it nowmost expensive component to manufacture in a fiber optic adapter, accounting for approximately 80% of the total adapter cost.

The ferrule alignment sleeves are also the most critical part of a fiber optic connection process. They provide the bridge between one cable’s ferrule and another cable’s ferrule interface. The precision of the ferrule sleeve and its hole determines how well the fibers align, which affects the light signal transmission.

Fiber optic adapters are generally made with ceramic or metal ferrule sleeves. Some adapters also feature ferrule sleeves that are a combination of these materials.

Ceramic ferrule sleeves are more precisely molded and fit close to the fiber ferrule. This precise molding gives the fiber optic connection a lower optical loss. As a general rule, use ceramic ferrule sleeves for critical network connections, such as backbone runs in highly secure networks or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrule sleeves best suit single-mode cable connections.

Ferrule sleeves made of metal, such as bronze ferrules, offer more durability than ceramic sleeves, but they may not offer the same precision alignment as ceramic ferrule sleeves. Drilling an accurate hole through the metal ferrule sleeve can be difficult, and that can result in less accurate fiber alignment. The use of watch-jeweled centering improves alignment. But overall, metal ferrule sleeves are better suited for multimode fiber applications where absolute alignment isn’t crucial.
collapse


Black Box Explains...Gold plating.

Get premium-quality connectors from Black Box. The 24-karat gold plating ensures better signal transmission and no corrosion. The shielding and heavy gold conductors provide improved performance.


Black Box Explains…HDMI

The High-Definition Multimedia Interface (HDMI®) is the first digital interface to combine uncompressed high-definition video, up to eight channels of uncompressed digital audio, and intelligent format and command data in... more/see it nowa single cable. It is now the de facto standard for consumer electronics and high-definition video and is gaining ground in the PC world.

HDMI supports standard, enhanced, and high-definition video. It can carry video signals at resolutions up to and beyond 1080p at 60 Hz (Full HD). The latest version eve support 4K video resolutions.

HDMI offers an easy, standardized way to set up home theaters and AV equipment over one cable. Use it to connect audio/video equipment, such as DVD players, set-top boxes, and A/V receivers with an audio and/or video equipment, such as a digital TVs, PCs, cameras, and camcorders. It also supports multiple audio formats from standard stereo to multichannel surround sound. Plus it provides two-way communications between the video source and the digital TV, enabling simple remote, point-and-click configurations.

NOTE: HDMI also supports HDCP (High-bandwidth Digital Content Protection), which prevents the copying of digital audio and video content transmitted over HDMI able. If you have a device between the source and the display that supports HDMI but not HDCP, your transmission won't work, even over an HDMI cable.

HDMI offers significant benefits over older analog A/V connections. It's backward compatible with DVI equipment, such as PCs. TVs, and other electronic devices using the DVI standard. A DVI-to-HDMI adapter can be used without a loss of video quality. Because DVI only supports video signals, no audio, the DVI device simply ignores the extra audio data.

HDMI standards
The HDMI standard was introduced in December 2002. Since then, there have been a number of versions with increasing bandwidth and/or transmission capabilities.

With the introduction of HDMI (June 2006), more than doubled the bandwidth from 4.95 Gbps to 10.2 Gbps (340 MHz). It offers support for 16-bit color, increased refresh rates, and added support for 1440p WQXGA. It also added support for xvYCC color space and Dolby True HD and DTS-HD Master Audio standards. Plus it added features to automatically correct audio video synchronization. Finally, it added a mini connector.

HDMI 1.3a (November 2006), HDMI 1.3b (March 2007, HDMI 1.3b1 (November 2007), and 1.3c (August 2008) added termination recommendations, control commands, and other specification for testing, etc.

HDMI 1.4 (May 2009) increased the maximum resolution to 4Kx 2K (3840 x 2160 p/24/25/30 Hz). It added an HDMI Ethernet channel for a 100-Mbps connection between two HDMI devices. Other advancements include: an Audio Return Channel, stereoscopic 3D over HDMI (HDMI 1.3 devices will only support this for 1080i), an automotive connection system, and the micro HDMI connector.

HDMI 1.4a (March 2010) adds two additional 3D formats for broadcast content.

HDMI 2.0 (August 2013), which is backwards compatible with earlier versions of the HDMI specification, significantly increases bandwidth up to 18 Gbps and adds key enhancements to support market requirements for enhancing the consumer video and audio experience.

HDMI 2.0 also includes the following advanced features:

  • Resolutions up to 4K@50/60 (2160p), which is four times the clarity of 1080p/60 video resolution, for the ultimate video experience.
  • Up to 32 audio channels for a multi-dimensional immersive audio experience.
  • Up to 1536Hz audio sample frequency for the highest audio fidelity.
  • Simultaneous delivery of dual video streams to multiple users on the same screen.
  • Simultaneous delivery of multi-stream audio to multiple users (up to four).
  • Support for the wide angle theatrical 21:9 video aspect ratio.
  • Dynamic synchronization of video and audio streams.
  • CEC extensions provide more expanded command and control of consumer electronics devices through a single control point.

  • HDMI connectors
    There are four HDMI connector types. Type A and Type B are defined in the HDMI 1.0 specification. Type C is defined in HDMI 1.3, and Type D is defined in HDMI 1.4. Type A: 19 pins. It supports all SDTV, EDTV, and HDTV modes. It is electrically compatible with single-link DVI-D.

    Type B: 29 pins. Offers double the video bandwidth of Type A. Use for very high-resolution displays such as WQUXGA. It's electronically compatible with dual-link DVI-D.

    Type C Mini: 19 pins. This mini connector is intended for portable devices. It is smaller than Type A but has the same pin configuration and can be connected to Type A cable via an adapter or adapter cable.

    Type D Micro: 19 pins. This also has the 19-pin configuration of Type A but is about the size of a micro-USB connector.

    HDMI cable
    Recently, HDMI Licnsing, LLC announced that all able would be tested as either Standard or High-Speed cables. Referring to cables based on HDMI standard (e.g. 1.2, 1.3 etc.) is no longer allowed.

    Standard HDMI cable is designed for use with digital broadcast TV, cable TV, satellites TV, Blu-ray, and upscale DVD payers to reliably transmit up to 1080i or 720p video (or the equivalent of 75 MHz or up to 2.25 Gbps).

    High-Speed HDMI reliably transmits video resolutions of 1080p and beyond, including advanced display technologies such as 4K, 3D, and Deep Color. High-Speed HDMI is the recommended cable for 1080p video. It will perform at speeds of 600 MHz or up to 18 Gbps, the highest bandwidth urgently available over an HDMI cable.

    Additional resources and licensing information is available at HDMI.org. collapse


    Black Box Explains... Crosstalk.

    One of the most important cable measurements is Near-End Crosstalk (NEXT). It’s signal interference from one pair that adversely affects another pair on the same end.

    Not only can crosstalk... more/see it nowoccur between adjacent wire pairs (“pair-to-pair NEXT“), but all other pairs in a UTP cable can also contribute their own levels of both near-end and far-end crosstalk, multiplying the adverse effects of this interference onto a transmitting or receiving wire pair.

    Because such compounded levels of interference can prove crippling in high-speed networks, some cable manufacturers have begun listing Power Sum NEXT (PS-NEXT), FEXT, ELFEXT, and PS-ELFEXT ratings for their CAT5e and CAT6 cables. Here are explanations of the different types of measurements:

    NEXT measures an unwanted signal transmitted from one pair to another on the near end.

    PS-NEXT (Power Sum crosstalk) is a more rigorous crosstalk measurement that includes the total sum of all interference that can possibly occur between one pair and all the adjacent pairs in the same cable sheath. It measures the unwanted signals from multiple pairs at the near end onto another pair at the near end.

    FEXT (Far-End crosstalk) measures an unwanted signal from a pair transmitting on the near end onto a pair at the far end. This measurement takes full-duplex operation into account where signals are generated simultaneously on both ends.

    ELFEXT (Equal-Level Far-End Crosstalk) measures the FEXT in relation to the received signal level measured on that same pair. It basically measures interference without the effects of attenuation—the equal level.

    PS-ELFEXT (Power Sum Equal-Level Far-End Crosstalk), an increasingly common measurement, measures the total sum of all intereference from pairs on the far end to a pair on the near end without the effects of attenuation. collapse


    Black Box Explains...10GBASE-T standard.

    In June 2006, the IEEE approved the standard for 10 Gigabit/sec Ethernet, or 10GBASE-T (10-GbE). 10-GbE transmission requires a bandwidth of 500 MHz.

    The 10-GbE standards.
    The cabling industry is developing... more/see it nowtwo different standards that can be used in 10-GbE applications. One is for use with Category 6 (CAT6) cable, and one is for Augmented Category 6 (CAT6a).

    Alien Crosstalk.
    Before discussing the standards, a definition of Alien Crosstalk is needed.

    Alien Crosstalk (ANEXT) is a critical measurement unique to 10-GbE systems. Crosstalk, measured in 10/100/1000BASE-T systems, is the mixing of signals between wire pairs within a cable. Alien Crosstalk is the measurement of the signal coupling between wire pairs in different, adjacent cables.

    The amount of ANEXT depends on a number of factors, including the promixity of adjacent cables and connectors, the cable length, cable twist density, and EMI. Patch panels and connecting hardware are also affected by ANEXT.

    With ANEXT, the affected cable is called the disturbed or victim cable. The surrounding cables are the disturbers.

    10-GbE using CAT6.
    The first set of standards defines cabling performance when using Category 6/Class E cabling for 10-GbE applications. The TIA/EIA version will be the Technical Systems Bulletin 155 (TSB 155). ISO/IEC TR 24750 is a technical report to be used for measuring existing Class E systems.

    No matter what the cable length is, CAT6 cable must meet 10-GbE electrical and ANEXT specifications up to 500 MHz. However, the CAT6 standard now specifies measurements only to 250 MHz, and it does not have an ANEXT requirement. There is no guarantee CAT6 can support a 10-GbE system. But the TSB provides guidelines for ways to help mitigate ANEXT. One way to lessen or eliminate ANEXT is to use shielded equipment and cables. Another way is to follow installation guidelines, such as using non-adjacent patch panels, separating equipment cords, unbundling horizontal cabling, etc.

    10GbE using CAT6a.
    The second set of standards will define Augmented Category 6 (CAT6a) and Augmented Class E (Class Ea) cabling. The newer, augmented cabling systems are designed to support 10-GbE over a 100-meter horizontal channel.

    The TIA/EIA version is in draft and will be published as ANSI/TIA/EIA-568B.2-AD10. It recognizes both UTP and STP CAT6a systems. It also extends CAT6 electrical parameters such as NEXT, FEXT, return loss, insertion loss, and more to 500 MHz. It specifies near- and far-end Alien Crosstalk (ANEXT, AFEXT) to 500 MHz. It also goes beyond IEEE 802.3an by establishing the electrical requirements for the permanent link and cabling components. The ISO Class Ea standard will be published in a new edition of the 11801 standard.

    These standards specify requirements for each component in the channel, such as cable and connecting hardware, as well as for the permanent link and the channel. collapse


    Black Box Explains... Baseband, broadband, and carrierband transmissions.

    Depending on the environment and how the electrical signal is sent over the cable, coax can be used for three types of transmissions.

    Baseband transmissions use the entire communication channel capacity... more/see it nowto transmit a single data signal. Many LANs employ Thin coax for baseband signaling.

    Broadband transmissions use different frequencies to carry several analog signals simultaneously. Each signal can for be a different type of information—data, voice, even video. Broadband transmissions over coax employ either one or two cables. With single-cable coax wiring, frequencies are split into individual channels for each station; some channels are allocated for bidirectional communication. Dual-cable coax wiring uses one cable for sending and one cable for receiving data, each with multiple channels. Broadband transmissions are ideal for long distances. Thick coax is often used for broadband transmissions.

    Unlike broadband transmissions, carrierband transmissions can only use one information channel. Carrierband is best suited for the horizontal subsystems (subnetworks) in industrial settings. Many LANs use Thin coax for carrierband signaling. collapse


    Black Box Explains...T1 and E1 benefits.

    If you manage a heavy-traffic data network and you demand high bandwidth for high speeds, Black Box has what you need to send your data digitally over super-fast T1 or... more/see it nowE1 communication lines.

    Both T1 and E1 are foundations of global voice communication.
    Developed more than 30 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but faster. T1 sends data up to 1.544 Mbps. E1 supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there—fast!

    Both services provide flexibility for a multitude of applications. Whether you need to drive a private, point-to-point line or a high- speed circuit, provide corporate access to the Internet or inbound access to your own webserver, or support a voice/data/fax/video WAN that extends halfway around the world, T1 or E1 can make the connection.

    Both offer cost-effective connections.
    In recent years, competition among telco service providers has led to increasingly more affordable prices for T1 and E1 services. In fact, most companies seriously considering a shift to T1 or E1 will find they can negotiate even better rates with just a little comparative cost analysis.

    Some typical applications include:
    • Accessing public Frame-Relay networks or public switched telephone networks for voice and fax.
    • Merging voice and data traffic. A single T1 or E1 line can give you several additional voice and data lines at no additional cost.
    • Making LAN connections. If you’re linking LANs, a T1 or E1 line offers excellent performance.
    • Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other graphics with large files. collapse

    Results 11-20 of 212 < 1 2 3 4 5 > >> 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services