Loading


Categories (x) > Testers & Tools > Testers (x)
Content Type (x) > Black Box Explains (x)

Results 1-5 of 5 1 

Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.
• Use one set of twisted-pair wires for both data and low-wattage appliances.
• In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
• Save money by eliminating the need to run electrical wiring.
• Easily move an appliance with minimal disruption.
• If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.
collapse


Using optical break locators and OTDRs.

An optical time-domain reflectometer, or OTDR, is an instrument used to analyze optical fiber. It sends a series of light pulses into the fiber under test and analyzes the light... more/see it nowthat is scattered and reflected back. These reflections are caused by faults such as breaks, splices, connectors, and adapters along the length of the fiber. The OTDR is able to estimate the overall length, attenuation or loss, and distance to faults. It’s also able to “see” past many of these “events” and display the results. The user is then able to see all the events along the length of the fiber run.

However, OTDRs do have a weakness?—?a blind spot that prevents them from seeing faults in the beginning of the fiber cable under test. To compensate for this, fiber launch boxes are used. Launch boxes come in predetermined lengths and connector types. These lengths of fiber enable you to compensate for this blind spot and analyze the length of fiber without missing any faults that may be in the first 10–30 meters of the cable.

An optical break locator, or OBL, is a simplified version of an OTDR. It’s able to detect high-loss events in the fiber such as breaks and determine the distance to the break. OBLs are much simpler to use than an OTDR and require no special training. However, there are limitations. They can only see to the first fault or event and do not display information on the portion of fiber after this event. collapse


Black Box Explains...Fiber.


Fiber versus copper.

When planning a new or upgraded cabling infrastructure, you have two basic choices: fiber or copper. Both offer superior data transmission. The decision on which one... more/see it nowto use may be difficult. It will often depend on your current network, your future networking needs, and your particular application, including bandwidth, distances, environment, cost, and more. In some cases, copper may be a better choice; in other situations, fiber offers advantages.


Although copper cable is currently more popular and much more predominant in structured cabling systems and networks, fiber is quickly gaining fans.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. Fiber optic cable is favored for applications that need high bandwidth, long distances, and complete immunity to electrical interference. It’s ideal for high data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances. A common application for fiber optic cable is as a network backbone, where huge amounts of data are transmitted. To help you decide if fiber is right for your new network or if you want to migrate to fiber, take a look at the following:



The advantages of fiber.

Greater bandwidth-Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase. Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber, and many CATV companies are converting to fiber.


Low attenuation and greater distance-Because the fiber optic signal is made of light, very little signal loss occurs during transmission so data can move at higher speeds and greater distances. Fiber does not have the 100-meter (304.8-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters to 40 kilometers, depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.


Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.


Security-Your data is safe with fiber cable. It does not radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the security of your fiber system, you’ll know it.


Immunity and reliability-Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The fiber is made of glass, which is an insulator, so no electric current can flow through. It is immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper is and can be submerged in water.


Design-Fiber is lightweight, thin, and more durable than copper cable. And, contrary to what you might think, fiber optic cable has pulling specifications that are up to ten times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper is, advancements in connectors are making temination easier. In addition, fiber is actually easier to test than copper cable.


Migration-The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.


Standards-New TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). A recent addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet standard.


Costs-The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.


Multimode or single-mode, duplex or simplex?

Multimode-Multimode fiber optic cable can be used for most general fiber applications. Use multimode fiber for bringing fiber to the desktop, for adding segments to your existing network, or in smaller applications such as alarm systems. Multimode cable comes with two different core sizes: 50 micron or 62.5 micron.


Single-mode-Single-mode is used over distances longer than a few miles. Telcos use it for connections between switching offices. Single-mode cable features an 8.5-micron glass core.


Duplex-Use duplex multimode or single-mode fiber optic cable for applications that require simultaneous, bidirectional data transfer. Workstations, fiber switches and servers, fiber modems, and similar hardware require duplex cable. Duplex is available in single- and multimode.


Simplex-Because simplex fiber optic cable consists of only one fiber link, you should use it for applications that only require one-way data transfer. For instance, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location. Simplex fiber comes in single- and multimode types.


50- vs. 62.5-micron cable.

Although 50-micron fiber cable features a smaller core, which is the light-carrying portion of the fiber, both 62.5- and 50-micron cable feature the same glass cladding diameter of 125 microns. You can use both in the same types of networks, although 50-micron cable is recommended for premise applications: backbone, horizontal, and intrabuilding connections, and should be considered especially for any new construction and installations. And both can use either LED or laser light sources.


The big difference between 50-micron and 62.5-micron cable is in bandwidth-50-micron cable features three times the bandwidth of standard 62.5-micron cable, particularly at 850 nm. The 850-nm wavelength is becoming more important as lasers are being used more frequently as a light source.


Other differences are distance and speed. 50-micron cable provides longer link lengths and/or higher speeds in the 850-nm wavelength. See the table below.




The ferrules: ceramic or composite?

As a general rule, use ceramic ferrules for critical network connections such as backbone cables or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrules are more precisely molded and fit closer to the fiber, which gives the fiber optic cables a lower optical loss.


Use composite ferrules for connections that are less critical to the network’s overall operation and less frequently changed. Like their ceramic counterparts, composite ferrules are characterized by low loss, good quality, and a long life. However, they are not as precisely molded and slightly easier to damage, so they aren’t as well-suited for critical connections.


Testing and certifying fiber optic cable.

If you’re accustomed to certifying copper cable, you’ll be pleasantly surprised at how easy it is to certify fiber optic cable because it’s immune to electrical interference. You only need to check a few measurements.

Attenuation (or decibel loss)-Measured in decibels/kilometer (dB/km), this is the decrease of signal strength as it travels through the fiber cable. Generally, attenuation problems are more common on multimode fiber optic cables.

Return loss-This is the amount of light reflected from the far end of the cable back to the source. The lower the number, the better. For example, a reading of -60 decibels is better than -20 decibels. Like attenuation, return loss is usually greater with multimode cable.

Graded refractive index-This measures how the light is sent down the fiber. This is commonly measured at wavelengths of 850 and 1300 nanometers. Compared to other operating frequencies, these two ranges yield the lowest intrinsic power loss. (NOTE: This is valid for multimode fiber only.)

Propagation delay-This is the time it takes a signal to travel from one point to another over a transmission channel.

Optical time-domain reflectometry (OTDR)-This enables you to isolate cable faults by transmitting high-frequency pulses onto a cable and examining their reflections along the cable. With OTDR, you can also determine the length of a fiber optic cable because the OTDR value includes the distance the optic signal travels.


There are many fiber optic testers on the market today. Basic fiber optic testers function by shining a light down one end of the cable. At the other end, there’s a receiver calibrated to the strength of the light source. With this test, you can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget. If the measured loss is less than the number calculated by your loss budget, your installation is good.


Newer fiber optic testers have a broad range of capabilities. They can test both 850- and 1300-nanometer signals at the same time and can even check your cable for compliance with specific standards.


Fiber precautions.

A few properties particular to fiber optic cable can cause problems if you aren’t careful during installation.

Intrinsic power loss-As the optic signal travels through the fiber core, the signal inevitably loses some speed through absorption, reflection, and scattering. This problem is easy to manage by making sure your splices are good and your connections are clean.

Microbending-Microbends are minute deviations in fiber caused by excessive bends, pinches, and kinks. Using cable with reinforcing fibers and other special manufacturing techniques minimizes this problem.

Connector loss-Connector loss occurs when two fiber segments are misaligned. This problem is commonly caused by poor splicing. Scratches and dirt introduced during the splicing process can also cause connector loss.

Coupling loss-Similar to connector loss, coupling loss results in reduced signal power and is from poorly terminated connector couplings.


Remember to be careful and use common sense when installing fiber cable. Use clean components. Keep dirt and dust to a minimum. Don’t pull the cable excessively or bend it too sharply around any corners. That way, your fiber optic installation can serve you well for many years.

collapse


Black Box Explains...Cable termination.


Carefully remove the jacketing from the cable and expose one inch of the insulated wire conductors. Do not remove any insulation from the conductors. When the... more/see it nowRJ-45 connector is crimped, the contacts inside will pierce the conductor insulation.


Untwist the wires to within 1/8" of the jacket. Arrange the wires according to the cable spec (568B in this case). Flatten and align the wires. Make one straight cut across all the conductors, removing approximately 1/2" to ensure the ends are of equal length.


Slide the wires into a connector. The cable jacket should extend into the connector about 1/4" for strain relief. Orient the wires so connector Pin 1 aligns with cable Pin 1, etc. Hold the connector in front of you. With the locking tab down, Pin 1 is on the far left.


Insert the connector into a crimp tool. Make sure you’re using the proper die. Firmly squeeze the handles. They’ll lock in a ratcheting action. A final click indicates the connector is firmly latched.


Check your work using a continuity tester or cable certifier rated for the cable standard you’re installing. Your tester should be able to check for shorts, opens, or miswires.


collapse


Black Box Explains…VoIP

Voice over Internet Protocol (VoIP) is a recently developed, cost-saving alternative to traditional telephone service that enables voice data to be transported over IP networks, like the Internet, instead of... more/see it nowthe public switched telephone network (PSTN) or a cellular network.

VoIP, which operates strictly over IP networks, can connect to other VoIP nodes or traditional phone lines. The IP network used may be the Internet or a private network.

In either instance, the actual data-transport portion of this network can still be made up of the full gamut of network services: high-speed leased lines, Frame Relay, ATM, DSL, copper, fiber, wireless, satellite, and microwave signals. VoIP simply digitizes voice data and adds it to other information traveling along the same network.

With this flexible technology, a phone call can be placed between two PCs, between a PC and a standard telephone, between a PC and an IP phone, between an IP phone and a standard telephone, or between two IP phones. It will take a long time for the PSTN to support this technology seamlessly, but this seems to be the direction in which phone systems are headed.

Benefits of VoIP
Because VoIP is inexpensive, has a worldwide reach, and operates on a few simple principles, it’s exploded in popularity in recent years—especially among both small and large businesses that incur significant long-distance telephone expenses.

Savings
Without question, the primary benefit of a VoIP system is decreasing or eliminating long-distance telephone charges. Organizations with a high volume of long-distance voice traffic stand to save quite a lot of money by implementing a VoIP system. However, this factor alone may not warrant a full commitment to VoIP for some companies.

Setup fees for VoIP are usually quite low so your organization can generally start saving money after only a month or two of service. And with the wide variety of VoIP products and services on the market, it’s easier than ever to set up a VoIP phone system over your network.

Convenience
VoIP can be set up in a way that enables you to use phone numbers in exactly the same way as you did before VoIP. Most of the services you get with traditional phone service—Voice Mail, Call Waiting, and Call Routing, for instance—are also available with VoIP.

VoIP doesn’t interfere with other network services either, so you can surf the Web while making a VoIP call.

Portability
VoIP doesn’t tie you to one phone or to a single location. Anywhere you find high-speed reliable Internet access, you can use VoIP. Your phone number stays the same wherever you are—office, home, hotel, or even traveling overseas.

Standards
Although the ITU standards for VoIP have evolved significantly in the last few years, VoIP is still suffering from a lack of generally accepted interoperability standards.

H.323, a standard for real-time audio, video, and data communications across IP-based networks (including the Internet), is almost universally accepted as the primary standard for VoIP call setup and signaling. It’s actually a collection of standards that works together for sending multimedia and data over networks that don’t provide guaranteed Quality of Service (QoS).

The H.323 standard includes:
- Real-Time Transport Protocol (RTP) specifies end-to-end network transport functions for applications transmitting real-time data such as video. RTP provides services like payload type identification, sequence numbering, time stamping, and delivery monitoring to real-time applications. Plus, it works with RTCP.
- Real-time Transport Control Protocol (RTCP) works with RTP to provide a feedback mechanism, providing QoS status and control information to the streaming server.
- Registration, Admission, Status (RAS) is a gateway protocol that manages functions such as signaling, registration, admissions, bandwidth changes, status, and disengage procedures.
- Q.931 manages call setup and termination.
- H.245 negotiates channel usage and capabilities.
- H.235 provides security and authentication.

As VoIP product manufacturers began conducting interoperability tests for more complex operations, they recognized that they needed a simpler and more adaptable standard for call handling and signaling protocol.

To this end, the IETF developed the Session Initiation Protocol (SIP). SIP is built with less computer code than H.323 is, so it’s less cumbersome. Because SIP is similar in nature to HTML—it uses ASCII text for configuration—users can adapt it more easily for specific VoIP systems. In contrast, modifying H.323 for VoIP applications requires a knowledgeable computer programmer.

Both H.323 and SIP are considered “thick clients,” where intelligence is maintained in the end devices such as IP telephones. In this respect, H.323 has a head start, although most VoIP systems today support both H.323 and SIP.

Providers
Despite the fact that VoIP standards are still developing, providers are already flooding the market with products and services while forming partnerships and matching expertise to strengthen their position in this new market. The biggest of these players and alliances—the ones who have the size and experience to grasp technical issues and quickly build infrastructures over which to offer VoIP services—are able to keep up with (and often influence) the continual changes in this market and keep rolling out new services.

Components
A VoIP system depends on devices that connect your traditional phone or phone system to an IP network. Components that you’ll see in a VoIP system include:
- End-user devices
- Gateways or gatekeepers
- IPBXs
- IP Networks

End-user devices are usually VoIP telephones or PCs running VoIP software. End-user devices have their own IP address and make a direct connection to the IP network.

A gateway is a device that converts circuit-switched analog voice calls from a traditional PBX into VoIP packets and transmits them over an IP network either to another gateway or directly to an end-user device.

A gateway can have additional features such as voice compression, echo cancellation, and packet prioritization.

Because VoIP-enabled end-user devices can communicate directly with each other over an IP network, a gateway is not a required component of a VoIP system as long as the VoIP devices are connected directly to the IP network.

An IPBX is a PBX with a built-in gateway. IPBX systems are equipped for hundreds of telephone ports, with WAN support for trunk connections to the PSTN, and with high-speed IP WAN links. In addition to VoIP features, these systems usually include other features typical of traditional PBX systems such as music on hold, auto-attendant, and call management. Often, they include Ethernet ports to support VoIP telephones.

VoIP can be set up with or without a connection to standard PSTN phone service. You can, of course, place calls over the Internet directly from your PC or IP phone to another VoIP-enabled device. But what makes VoIP so versatile is that, through the use of a gateway service, it can also be used to call the numbers of phones connected to standard land-line or cellular phone services. They can also receive calls from standard telephones.

Not all fun and free calls
There are still things to consider when you’re deciding whether or not to invest in VoIP.

Regulation vagaries
Much of the government regulation of VoIP is still being worked out. The U.S. government hasn’t decided whether VoIP is going to be regulated as phone service or whether to tax it. VoIP isn’t available worldwide because some governments fear the loss of tax revenue or control.

Compatibility
Although older VoIP equipment may still have some compatibility issues, current VoIP products from different vendors generally work together.

Cost
For all the popular talk about VoIP being free, it isn’t truly free. Any VoIP system has costs associated with its implementation—equipment, high-speed Internet access, and gateway service. So, although it’s inexpensive, it’s a long way from being free. For organizations with a high volume of long-distance calls, especially to international locations, VoIP almost always pays for itself quickly. However, private users or organizations with a low volume of long-distance calls primarily within the U.S., may find that a standard service is actually more economical in the short- to mid-term.

QoS
VoIP depends on having a fast, reliable network to operate. A fast network connection with guaranteed bandwidth is not a problem in a corporate intranet where you have complete control over the network. However, if you’re using the Internet for VoIP, you’re using a public network that may be subject to slowdowns that cause drop-outs and distortion. You may find that your high-speed Internet connection is faster than the actual Internet and that the quality of your connection is generally unacceptable or is unacceptable at times when Internet usage is high.

There are four common network issues that can cause problems with a VoIP system:
- Latency is a delay in data transmission. With VoIP, this usually results in people speaking over one another because neither can tell when the other is finished talking.
- Loss. Losing a small percentage of voice transmission doesn’t affect VoIP, but too much (more than 1%) compromises the quality of the call.
- Jitter—is common to congested networks with bursty traffic. Jitter can be managed to some degree with software buffers.
- Sequence errors—or changes in the order of packets when they’re recompiled at the receiving station, degrades sound quality.

Emergency services
If you subscribe to a VoIP gateway service that enables you to use your VoIP phone like a regular phone, be aware that you may not be able to call 911 for emergencies. If 911 service is important to you because you don’t have an alternative way to call 911, shop for a VoIP provider who does provide this service.

Consider, too, that VoIP needs both working Internet access and power to work. If you lose your Internet service, your phone goes, too. And, unlike regular phone service that can keep basic telephones working when the power goes out, VoIP needs power—if you lose power, you lose your phone.

Moving forward
Before VoIP technology becomes truly universal, the current worldwide PSTN will have to migrate to a packet-based IP equivalent. Industry inertia alone dictates this will not occur instantly. The current worldwide PSTN system has grown to what it is over a period of 125 years. Given the sheer complexity of the existing PSTN, the migration to an IP packet network will probably occur during several decades.

As migration from the PSTN to IP-based networks proceeds, businesses and home users will gradually discover reasons of their own to implement VoIP. It won’t happen right away, but we predict that VoIP will become a big part of telecommunications in the not-so-distant future.

Although it’s not quite as convenient as conventional phone service, VoIP can offer serious savings—particularly if you now regularly pay for multiple overseas phone calls. Keep in mind though, VoIP isn’t a one-size-fits-all solution. But with a little planning, VoIP could spell savings for you! collapse

Results 1-5 of 5 1 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services