Loading



Results 1-10 of 2462 1 2 3 4 5 > >> 



Black Box Explains...MT-RJ fiber optic connectors.

Bringing fiber to the desktop is a great way to provide your users with increased bandwidth. The first step in achieving this goal is to provide an inexpensive fiber optic... more/see it nowsystem that is intuitive to the end user, easy to terminate in the field, and widely supported by equipment manufacturers. MT-RJ could be the answer to all these requirements.

A collaborative effort by leading fiber optic manufacturers, MT-RJ has an intuitive RJ latch that users recognize from copper Category 5 patch cords and traditional telephone cords, and it operates in the same way. The plug and jack are also similar in size to traditional RJ-type connectors.

Field installation, a common concern, is easier because of MT-RJ’s no-polish, no-epoxy, quick-termination design. MT-RJ is available in single- or multimode configurations and is backwards compatible for integration into existing networks. Since MT-RJ has duplex polarity, you don’t have to worry about the polarity reversal that happens with traditional ST type connectors. The TIA/EIA recently voted to accept MT-RJ, indicating wide acceptance of the new design and possible future inclusion in the TIA/EIA 568A standard.

Black Box, the name you trust to keep you up with the latest industry developments, supports this new technology. collapse


Black Box Explains... Manual switch chassis styles.

There are five manual switch chassis styles: three for standalone switches (Styles A, B, and C) and two for rackmount switches (Styles D and E). Below are the specifications for... more/see it noweach style.

Standalone Switches

Chassis Style A
Size — 2.5"H x 6"W x 6.3"D (6.4 x 15.2 x 16 cm
Weight — 1.5 lb. (0.7 kg)
Chassis Style B
Size — 3.5"H x 6"W x 6.3"D (8.9 x 15.2 x 16 cm)
Weight — 1.5 lb. (0.7 kg)
Chassis Style C
Size — 3.5"H x 17"W x 5.9"D (8.9 x 43.2 x 15 cm)
Weight — 8.4 lb. (3.8 kg)

Rackmount Switches

Chassis Style D (Mini Chassis)
Size — 3.5"H x 19"W x 5.9"D (8.9 x 48.3 x 15 cm)
Chassis Style E (Standard Chassis)
Size — 7"H x 19"W x 5.9"D (17.8 x 48.3 x 15 cm) collapse


Black Box Explains...UARTs and PCI buses.

Universal Asynchronous Receiver/Transmitters UARTs are designed to convert sync data from a PC bus to an async format that external I/O devices such as printers or modems use. UARTs insert... more/see it nowor remove start bits, stop bits, and parity bits in the data stream as needed by the attached PC or peripheral. They can provide maximum throughput to your high-performance peripherals without slowing down your CPU.

In the early years of PCs and single-application operating systems, UARTs interfaced directly between the CPU bus and external RS-232 I/O devices. Early UARTs did not contain any type of buffer because PCs only performed one task at a time and both PCs and peripherals were slow.

With the advent of faster PCs, higher-speed modems, and multitasking operating systems, buffering (RAM or memory) was added so that UARTs could handle more data. The first buffered UART was the 16550 UART, which incorporates a 16-byte FIFO (First In First Out) buffer and can support sustained data-transfer rates up to 115.2 kbps.

The 16650 UART features a 32-byte FIFO and can handle sustained baud rates of 460.8 kbps. Burst data rates of up to 921.6 kbps have even been achieved in laboratory tests.

The 16750 UART has a 64-byte FIFO. It also features sustained baud rates of 460.8 kbps but delivers better performance because of its larger buffer.

Used in newer PCI cards, the 16850 UART has a 128-byte FIFO buffer for each port. It features sustained baud rates of 460.8 kbps.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed peripherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

A Universal PCI (uPCI) card has connectors that work with both a newer 3.3-V power supply and motherboard and with older 5.5-V versions. collapse


Black Box Explains...Category wiring standards

The ABCs of standards
There are two primary organizations dedicated to developing and setting structured cabling standards. In North America, standards are issued by the Telecommunications Industry Association (TIA),... more/see it nowwhich is accredited by the American National Standards Institute (ANSI). The TIA was formed in April 1988 after a merger with the Electronics Industry Association (EIA). That’s why its standards are commonly known as ANSI/TIA/EIA, TIA/EIA, or TIA.

Globally, the organizations that issue standards are the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO). Standards are often listed as ISO/IEC. Other organizations include the Canadian Standards Association (CSA), CENELEC (European Committee for Electrotechnical Standardizations), and the Japanese Standards Association (JSA/JSI).

The committees of all these organizations work together and the performance requirements of the standards are very similar. But there is some confusion in terminology.

The TIA cabling components (cables, connecting hardware, and patch cords) are labeled with a ”category.” These components together form a permanent link or channel that is also called a ”category.” The ISO/IEC defines the link and channel requirements with a ”class” designation. But the components are called a ”category.”

The standards
Category 5 (CAT5) —ratified in 1991. It is no longer recognized for use in networking.

Category 5e (CAT5e), ISO/IEC 11801 Class D, ratified in 1999, is designed to support full-duplex, 4-pair transmission in 100-MHz applications. The CAT5e standard introduced the measurement for PS-NEXT, EL-FEXT, and PS-ELFEXT. CAT5e is no longer recognized for new installations. It is commonly used for 1-GbE installations.

Category 6 (CAT6) – Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TIA TSB-155-A and ISO/IEC 24750 qualifies 10-GbE over CAT6 over channels of 121 to 180 feet (37 to 55 meters) and requires it to be 100% tested, which is extremely time consuming. To mitigate ANEXT in CAT6, it is recommended that the cables be unbundled, that the space between cables be increased, and that non-adjacent patch panel ports be used. If CAT6 F/UTP cable is used, mitigation is not necessary and the length limits do not apply. CAT6 is not recommended for new 10-GbE installations.

Augmented Category 6 (CAT6A) –Class Ea was ratified in February 2008. This standard calls for 10-Gigabit Ethernet data transmission over a 4-pair copper cabling system up to 100 meters. CAT6A extends CAT6 electrical specifications from 250 MHz to 500 MHz. It introduces the ANEXT requirement. It also replaces the term Equal Level Far-End Crosstalk (ELFEXT) with Attenuation to Crosstalk Ratio, Far-End (ACRF) to mesh with ISO terminology. CAT6A provides improved insertion loss over CAT6. It is a good choice for noisy environments with lots of EMI. CAT6A is also well-suited for use with PoE+.

CAT6A UTP cable is significantly larger than CAT6 cable. It features larger conductors, usually 22 AWG, and is designed with more space between the pairs to minimize ANEXT. The outside diameter of CAT6A cable averages 0.29"–0.35" compared to 0.21"–0.24" for CAT6 cable. This reduces the number of cables you can fit in a conduit. At a 40% fill ratio, you can run three CAT6A cables in a 3/4" conduit vs. five CAT6 cables.

CAT6A UTP vs. F/UTP. Although shielded cable has the reputation of being bigger, bulkier, and more difficult to handle and install than unshielded cable, this is not the case with CAT6A F/UTP cable. It is actually easier to handle, requires less space to maintain proper bend radius, and uses smaller conduits, cable trays, and pathways. CAT6A UTP has a larger outside diameter than CAT6A F/UTP cable. This creates a great difference in the fill rate of cabling pathways. An increase in the outside diameter of 0.1", from 0.25" to 0.35" for example, represents a 21% increase in fill volume. In general, CAT6A F/UTP provides a minimum of 35% more fill capacity than CAT6A UTP. In addition, innovations in connector technology have made terminating CAT6A F/UTP actually easier than terminating bulkier CAT6A UTP.

Category 7 (CAT7) –Class F was published in 2002 by the ISO/IEC. It is not a TIA recognized standard and TIA plans to skip over it.

Category 7 specifies minimum performance standards for fully shielded cable (individually shielded pairs surrounded by an overall shield) transmitting data at rates up to 600 MHz. It comes with one of two connector styles: the standard RJ plug and a non-RJ-style plug and socket interface specified in IEC 61076-2-104:2.

Category 7a (CAT7a) –Class Fa (Amendment 1 and 2 to ISO/IEC 11801, 2nd Ed.) is a fully shielded cable that extends frequency from 600 MHz to 1000 MHz.

Category 8 – The TIA decided to skip Category 7 and 7A and go to Category 8. The TR-42.7 subcommittee is establishing specs for a 40-Gbps twisted-pair solution with a 2-GHz frequency. The proposed standard is for use in a two-point channel in a data center at 30 meters. It is expected to be ratified in February 2016. The TR-42.7 subcommittee is also incorporating ISO/IEC Class II cabling performance criteria into the standard. It is expected to be called TIA-568-C.2-1. The difference between Class I and Class II is that Class II allows for three different styles of connectors that are not compatible with one another or with the RJ-45 connector. Class I uses an RJ-45 connector and is backward compatible with components up to Category 6A. collapse


Black Box Explains...IRQs, COM Ports, and Windows

Windows® 95 normally requires each serial port to have its own unique Interrupt Request Line (IRQ). However, if you use a third-party communications driver that supports IRQ sharing, you can... more/see it nowshare interrupts. Unfortunately, data throughput will not be as high as with single interrupt port configurations.

With Windows NT®, you can share interrupts across multiple ports as long as the serial ports have an Interrupt Status Port (ISP) built into the card.

The Interrupt Service Routine, a software routine that services interrupts and requests processor time, reads the ISP and is immmediately directed to the port that has an interrupt pending. Compared to the polling method used if the serial ports don’t have an ISP, this feature can determine which port generated the interrupt up to four times more efficiently—and it almost eliminates the risk of lost data. Windows NT supports the ISP by enabling the user to configure the registry to match the card’s settings. Black Box models IC102C-R3, IC058C, and IC112C-R3 all have ISPs and come with a Windows NT setup utility to simplify installation and configuration.

If your serial port doesn’t have an ISP, the Interrupt Service Routine has to poll each port separately to determine which port generated the interrupt. collapse


Black Box Explains...Media converters.



Media converters interconnect different cable types such as twisted pair, fiber, and coax within an existing network. They are often used to connect newer Ethernet equipment to legacy cabling.... more/see it nowThey can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference (EMI).


Traditional media converters are purely Layer 1 devices that only convert electrical signals and physical media. They don’t do anything to the data coming through the link so they’re totally transparent to data. These converters have two ports—one port for each media type. Layer 1 media converters only operate at one speed and cannot, for instance, support both 10-Mbps and 100-Mbps Ethernet.


Some media converters are more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services—in other words, they’re really switches. This kind of media converter often has more than two ports, enabling you to, for instance, extend two or more copper links across a single fiber link. They also often feature autosensing ports on the copper side, making them useful for linking segments operating at different speeds.


Media converters are available in standalone models that convert between two different media types and in chassis-based models that connect many different media types in a single housing.




Rent an apartment

Standalone converters convert between two media. But, like a small apartment, they can be outgrown. Consider your current and future applications before selecting a media converter. Standalone converters are available in many configurations, including 10BASE-T to multimode or single-mode fiber, 10BASE-T to Thin coax (ThinNet), 10BASE-T to thick coax (standard Ethernet), CDDI to FDDI, and Thin coax to fiber. 100BASE-T and 100BASE-FX models that connect UTP to single- or multimode fiber are also available. With the development of Gigabit Ethernet (1000 Mbps), media converters have been created to make the transition to high-speed networks easier.




...or buy a house.

Chassis-based or modular media converters are normally rackmountable and have slots that house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and 10BASE-T, 100BASE-TX, 100BASE-FX, and Gigabit modules may also be mixed.

collapse


Black Box Explains...Modem eliminators.

Understanding the process of elimination.
If your office environment has sync equipment, and if that equipment is also used for local data communications, you should consider replacing those modems with cost-effective... more/see it nowand versatile modem eliminators.

What does a modem eliminator do?
One modem eliminator can connect a local terminal and computer port in lieu of the pair of modems that they would normally connect to. Plus, a modem eliminator enables DCE-to-DTE data and control-signal connections that are not easily achieved by standard cables or connectors in a sync environment.

Basically, a modem eliminator simulates a sync data link. It does this two ways. First, it provides clocking, which is mandatory for sync devices to communicate. Second, it provides the handshaking that DCEs do.

Why should you use a modem eliminator?
One—if you have two sync DTEs in the same room or close to each other, you will need a modem eliminator.

Two—if you have a network with routers, you just found the perfect equipment tester.

A modem eliminator can enable in-house bench testing of routers or existing equipment. There’s no need to place routers all over your network only to find out they don’t work once you test the LAN. A modem eliminator tells you what equipment passes your tests before you install.

Three—a modem eliminator makes good economic sense. One does the job of two modems—and it does the job better. You get a high return on your investment. collapse

  • Pdf Drawing... 
  • GigaBase 350 CAT5e, 350-MHz Solid Bulk Cable (PVC, Green) PDF Drawing
    PDF Drawing of the EYN859A-PB-1000 (1)
 
Results 1-10 of 2462 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services