Loading


Categories (x) > Networking (x)

Results 71-80 of 406 << < 6 7 8 9 10 > >> 


Black Box Explains...Layer 3 switching.

In the last decade, network topologies have typically featured routers along with hubs or switches. The hub or switch acts as a central wiring point for LAN segments while the... more/see it nowrouter takes care of higher-level functions such as protocol translation, traffic between LAN segments, and wide-area access.

Layer 3 switching, which combines Layer 2 switching and Layer 3 IP routing, provides a more cost-effective way of setting up LANs by incorporating switching and routing into one device. While a traditional Layer 2 switch simply sends data along without examining it, a Layer 3 switch incorporates some features of a router in that it examines data packets before sending them on their way. The integration of switching and routing in a Layer 3 switch takes advantage of the speed of a switch and the intelligence of a router in one economical package.

There are two basic types of Layer 3 switching: packet-by-packet Layer 3 (PPL3) and cut-through Layer 3.

PPL3 switches are technically routers in that they examine all packets before forwarding them to their destinations. They achieve top speed by running protocols such as OSPF (Open Shortest Path First) and by using cache routing tables. Because these switches understand and take advantage of network topology, they can blow the doors off traditional routers with speeds of more than 7,000,000 (that’s seven million!) packets per second.

Cut-through Layer 3 switching relies on a shortcut for top speed. Cut-through Layer 3 switches, rather than examining every packet, examine only the first in a series to determine its destination. Once the destination is known, the data flow is switched at Layer 2 to achieve high speeds. collapse


Black Box Explains...Media converters that are really switches.

A media converter is a device that converts from one media type to another, for instance, from twisted pair to fiber to take advantage of fiber’s greater range. A traditional... more/see it nowmedia converter is a two-port Layer 1 device that performs a simple conversion of only the physical interface. It’s transparent to data and doesn't “see” or manipulate data in any way.

An Ethernet switch can also convert one media type to another, but it also creates a separate collision domain for each switch port, so that each packet is routed only to the destination device, rather than around to multiple devices on a network segment. Because switches are “smarter” than traditional media converters, they enable additional features such as multiple ports and copper ports that autosense for speed and duplex.

Switches are beginning to replace traditional 2-port media converters, leading to some fuzziness in terminology. Small 4- or 6-port Ethernet switches are very commonly called media converters. In fact, anytime you see a “Layer 2” media converter or a media converter with more than two ports, it’s really a small Ethernet switch. collapse

  • Manual... 
  • Hardened Managed Ethernet Switch User Manual
    User Manual for the LEH900 Series, LEH1000 Series, LEH1100, & LEH1200 Series (Version 3)
 

Product Data Sheets (pdf)...CPU Security Cabinets  CPU Mobile Security Cabinets

  • Manual... 
  • FlexPoint T1/E1 to Fiber Line Driver
    Installation and User Guide (Mar-06)
 
  • Quick Start Guide... 
  • 2-Port Hardened Serial Server QSG
    Quick Start Guide for the LES422A (Version 1)
 
  • Manual... 
  • User Guide
    User Guide for the ET0010A, ET0100A, and ET1000A.
 

Black Box Explains...Choosing a wireless antenna.


Ride the wave.

One of the most critical components to operating a successful wireless network is having the right antennas. Antennas come in many different shapes and sizes,... more/see it noweach designed for a specific function. Selecting the right antennas for your network is crucial to achieving optimum network performance. In addition, using the right antennas can decrease your networking costs since you’ll need fewer antennas and access points.


Basically, a wireless network consists of data, voice, and video information packets being transmitted over low-frequency radio waves instead of electrically over copper cable or via light over fiber lines. The antenna acts as a radiator and transmits waves through the air, just like radio and TV stations. Antennas also receive the waves from the air and transport them to the receiver, which is a radio, TV, or in the case of wireless networking, a router or an access point.


Type cast.

The type of antennas you use depends on what type of network you’re setting up and the coverage you need. How large is your network? Is it for a home, single office, campus, or larger? Is it point-to-point or multipoint?


The physical design-walls, floors, etc.- of the building(s) you’re working in also affects the type and number of antennas you need. In addition, physical terrain affects your antenna choices. Obviously, a clear line of sight works best, but you need to consider obstructions such as trees, buildings, hills, and water. (Radio waves travel faster over land than water.) You even need to consider traffic noise in urban settings.


The ideal shape.

Let’s take a look at the different types of antennas.


Isotropic Antenna. First, think of the introduction to the old RKO movies. A huge tower sits on top of the world and emanates circular waves in all directions. If you could actually see the waves, they would form a perfect sphere around the tower. This type of antenna is called an isotropic antenna, and does not exist in the real world. It is theoretical and is used as a base point for measuring actual antennas.


Go in the right direction.

Now let’s turn to real-world antennas. There are many types of antennas that emit radio waves in different directions, shapes, and on different planes. Think of the spherical isotropic antenna. If squeezed from the sides, it will become shaped like a wheel and will concentrate waves on a vertical plane. If squeezed from the top, it will flatten out like a pancake and radiate waves on a horizontal plane. Thus, there are two basic types of antennas: directional and omnidirectional.


Directional antennas.

Directional antennas, primarily used in point-to-point networks, concentrate the waves in one direction much like a flashlight concentrates light in a narrow beam. Directional antennas include backfire, Yagi, dish, panel, and sector.


Backfire. This small directional antenna looks like a cake pan with a tin can in the middle. It’s designed to be compact, often under 11" in diameter, making it unobtrusive and practical for outdoor use. These antennas also offer excellent gain, and can be used in both point-to-point or point-to-multipoint systems.


Yagi. The Yagi-Uda (or Yagi) antenna is named for its Japanese inventors. The antenna was originally intended for radio use and is now frequently used in 802.11 wireless systems.


A Yagi antenna is highly directional. It looks like a long fishbone with a central spine and perpendicular rods or discs at specified intervals. Yagi antennas offer superior gain and highly vertical directionality. The longer the Yagi, the more focused its radiation is. Many outdoor Yagi antennas are covered in PVC so you can’t see the inner structure.


Yagi antennas are good for making point-to-point links in long narrow areas (for instance, connecting to a distant point in a valley) or for point-to-point links between buildings. They can also be used to extend the range of a point-to-multipoint network.


Parabolic or Dish. These antennas look like a circular or rectangular concave bowl or "dish". The backboard can be solid or a grid design. Parabolic grid designs are excellent for outdoor use since the wind blows right through them. The concave nature of this dish design focuses energy into a narrow beam that can travel long distances, even up to several miles. This makes parabolic antennas ideal for point-to-point network connections. Since they generate a narrow beam in both the horizontal and vertical planes, offer excellent gain, and minimize interference, they’re ideal for long-distance point-to-point networks.


Panel or Patch. These antennas are often square or rectangular, and they’re frequently hung on walls. They’re designed to radiate horizontally forward and to the side, but not behind them. Sometimes they’re called "picture-frame" antennas.


Panel antennas are ideal in applications where the access point is at one end of a building. They’re good for penetrating a single floor of a building, and for small and medium-size homes and offices. Since they might not have much vertical radiation, they might not be a good choice for multifloor applications.


Because panel antennas can be easily concealed, they’re a good choice when aesthetics are important.


Sector. A sector antenna can be any type of antenna that directs the radio waves in a specific area. They are often large, outdoor flat-panel or dish-type antennas mounted up high and tilted downward toward the ground. These antennas are often used in sprawling campus settings to cover large areas.


Omnidirectional antennas.

Omnidirectional antennas provide the widest coverage possible and are generally used in point-to-multipoint networks. Their range can be extended by overlapping circles of coverage from multiple access points. Most omnidirectional antennas emanate waves in a fan-shaped pattern on a horizontal plane. Overall, omnidirectional antennas have lower gain than directional antennas. Examples of omnidirectional antennas include: integrated, blade, and ceiling.


Integrated. Integrated antennas are antennas that are built into wireless networking devices. They may be embedded in PC card client adapters or in the covers or body of laptops or other devices, such as access points. Integrated antennas often do not offer the same reception as external antennas and might not pick up weak signals. Access points with integral antennas must often be moved or tilted to get the best reception.


Blade. These small, omnidirectional antennas are often housed in long, thin envelopes of plastic. They are most often used to pick up a signal in a low-signal or no-signal spot. You usually will see them on the walls of cubicles, mounted on desktops, or even hung above cubicles to catch signals. They’re basically an inexpensive signal booster.


Ceiling Dome. These are sometimes also called ceiling blister antennas. They look somewhat like a smoke detector and are designed for unobtrusive use in ceilings, particularly drop ceilings. Ceiling dome antennas often have a pigtail for easy connection to access points. They’re excellent for use in corporate environments where wide coverage over a cube farm is needed.


Wave basics.

To better understand wireless antennas and networking, there are some basic measurements and terms that need to be discussed.


Gain. One of the primary measurements of antennas is gain. Gain is measured as dBi, which is how much the antenna increases the transmitter’s power compared to the theoretical isotropic antenna, which has a gain of 0 dBi. dBi is the true gain the antenna provides to the transmitter’s output. Gain is also reciprocal-it’s the same transmitting and receiving. Higher gain means stronger sent and received signals. An easy way to remember gain basics is that every 3 dB of gain added doubles the effective power output of an antenna. The more an antenna concentrates a signal, the higher the gain it will have.


You can actually calculate the gains and losses of a system by adding up the gains and losses of its parts in decibels.


Frequency and Wavelength. Electromagnetic waves are comprised of two components: frequency and wavelength.


Frequency is how many waves occur each second. Wavelength is the distance between one peak of a wave and the next peak. Lower frequencies have longer wavelengths; higher frequencies have shorter wavelengths. For example, the frequency of AM radio is 1 MHz with a wavelength of about 1000 feet. FM radios operate at a much higher frequency of 100 MHz and have a wavelength of about 100 feet.


The two most common frequencies for wireless networking are 2.4-GHz and 5-GHz. Both are very high frequencies with very short wavelengths in the microwave band. The 2.4-GHz frequency has a wavelength of about 5 inches.


Beamwidth. Consider an antenna to be like a flashlight or spotlight. It reflects and directs the light (or radio waves) in a particular direction. Beamwidth actually measures how energy is focused or concentrated.


Polarization. This is the direction in which the antenna radiates wavelengths, either vertically, horizontally, or circularly. Vertical antennas have vertical polarization and are the most common. For optimum performance, it is important that the sending and receiving antennas have the same polarization.


VSWR and Return Loss. Voltage Standing Wave Ratio (VSWR) measures how well the antenna is matched to the network at the operating frequency being used. It indicates how much of the received signal won’t reach either the transceiver or receiver. Return loss measures how well matched an antenna is to the network. Typical VSWR numbers are 1:1.2 or 1:1.5. A typical return loss number is 20.

collapse


Product Data Sheets (pdf)...Modular Media Converters

Results 71-80 of 406 << < 6 7 8 9 10 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services