Loading


Categories (x) > Networking (x)

Results 21-30 of 379 < 1 2 3 4 5 > >> 

Black Box Explains... GBICs

A Gigabit Interface Converter (GBIC) is a transceiver that converts digital electrical currents to optical signals and back again. GBICs support speeds of 1 Gbps or more and are typically... more/see it nowused as an interface between a high-speed Ethernet or ATM switch and a fiber backbone. GBICs are hot-swappable, so switches don’t need to be powered down for their installation. collapse

  • Application Note... 
  • Ethernet Switches and ServSwitch Agility KVM-over-IP Extension
    The important interoperability considerations when choosing Ethernet switches for use with Agility systems. (Version 1)
 


Product Data Sheets (pdf)...Pure Networking PCI Bus Network Adapters

  • Manual... 
  • Pure Networking%X99 Gigabit Media Converter User Manual
    User Manual for the LGC200A, LGC201A, and LGC202A (Version 1)
 
  • Manual... 
  • PoE PD Switch (Unmanaged, 10BASE-T/100BASE-TX/1000BASE-T) User Manual
    User Manual for the LPDG705A & LPDG708A (Version 3)
 

Black Box Explains...LAN switches.



Rush hour-all day, every day.

Applications such as document imaging, video/multimedia production, and intranetworking are very demanding. They generate huge data files that often must be transferred... more/see it nowbetween stations based on strict timing requirements. If such traffic is not transmitted efficiently, you end up with jerky video, on-screen graphics that take forever to load, or other irritating, debilitating problems.


These problems arise because in traditional LANs, only one network node transmits data at a time while all other stations listen. This works in conventional, server-based LANs where multiple workstations share files or applications housed on a central server. But if a network has several servers, or if it supports high-bandwidth, peer-to-peer applications such as videoconferencing, the one-station-at-a-time model just doesn’t work.


Ideally, each LAN workstation should be configured with its own dedicated LAN cable segment. But that’s neither practical nor affordable. A far more reasonable solution is a network designed to provide clear paths from each workstation to its destination on demand, whether that destination is another workstation or server.


These vehicles clear the lanes.

Unlike bridges and routers, which process data packets on an individual, first-come, first-served basis, switches maintain multiple, simultaneous data conversions among attached LAN segments.


From the perspective of an end-user workstation, a switched circuit appears to be a dedicated connection-a direct, full-speed LAN link to an attached server or other remote LAN node. Although this technique is somewhat different from what a LAN bridge or router does, switching hubs are based on similar technologies.




Which route will you choose?

Switching hubs that use bridging technologies are called Layer 2 switches-a reference to Layer 2 or the Data-Link Layer of the OSI Model. These switches operate using the MAC addresses in Layer 2 and are transparent to network protocols. Switches that use routing technologies are known as Layer 3 switches, referring to Layer 3—the Network Layer—of the OSI Model. These switches, like routers, represent the next higher level of intelligence in the hardware hierarchy. Rather than passing packets based on MAC addresses, these switches look into the data structure and route it based on the network addresses found in Layer 3. They are also dependent on the network protocol.


Layer 2 switches connect different parts of the same network as determined by the network number contained with the data packet. Layer 3 switches connect LANs or LAN segments with different network numbers.


If you’re subdividing an existing LAN, obviously you’re dealing with only one network and one network number, so you can install a Layer 2 switch wherever it will segment network traffic the best, and you don’t have to reconfigure the LAN. However, if you use a Layer 3 switch, you’ll have to reconfigure the segments to ensure that each has a different network number.


Similarly, if you’re connecting existing networks, you have to examine the currently configured network numbers before adding a switch. If the network numbers are the same, you need to use a Layer 2 switch. If they’re different, you must use a Layer 3 switch.


When dealing with multiple existing networks, you’ll find they usually use different network numbers. In this case, it’s preferable to use a Layer 3 switch (or possibly even a full-featured router) to avoid reconfiguring the network.


But what if you’re designing a network from scratch and can choose either type of switch? Your decision should be based on the expected complexity of your LAN. Layer 3 routing technology is well suited for complex networks. Layer 2 switches are recommended for smaller, less complex networks.

collapse


Product Data Sheets (pdf)...FlexPoint Modular Media Converters


Product Data Sheets (pdf)...Pure Networking Media Converters


Product Data Sheets (pdf)...Value-Line Console Servers

Results 21-30 of 379 < 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services