Loading


Categories (x) > Networking (x)

Results 11-20 of 398 < 1 2 3 4 5 > >> 


Black Box Explains...SFP, SFP+, and XFP transceivers.

SFP, SFP+, and XFP are all terms for a type of transceiver that plugs into a special port on a switch or other network device to convert the port to... more/see it nowa copper or fiber interface. These compact transceivers replace the older, bulkier GBIC interface. Although these devices are available in copper, their most common use is to add fiber ports. Fiber options include multimode and single-mode fiber in a variety of wavelengths covering distances of up to 120 kilometers (about 75 miles), as well as WDM fiber, which uses two separate wavelengths to both send and receive data on a single fiber strand.

SFPs support speeds up to 4.25 Gbps and are generally used for Fast Ethernet or Gigabit Ethernet applications. The expanded SFP standard, SFP+, supports speeds of 10 Gbps or higher over fiber. XFP is a separate standard that also supports 10-Gbps speeds. The primary difference between SFP+ and the slightly older XFP standard is that SFP+ moves the chip for clock and data recovery into a line card on the host device. This makes an SFP+ smaller than an XFP, enabling greater port density.

Because all these compact transcievers are hot-swappable, there’s no need to shut down a switch to swap out a module—it’s easy to change interfaces on the fly for upgrades and maintenance.

Another characteristic shared by this group of transcievers is that they’re OSI Layer 1 devices—they’re transparent to data and do not examine or alter data in any way. Although they’re primarily used with Ethernet, they’re also compatible with uncommon or legacy standards such as Fibre Channel, ATM, SONET, or Token Ring.

Formats for SFP, SFP+, and XFP transceivers have been standardized by multisource agreements (MSAs) between manufacturers, so physical dimensions, connectors, and signaling are consistent and interchangeable. Be aware though that some major manufacturers, notably Cisco, sell network devices with slots that lock out transceivers from other vendors. collapse

  • Manual... 
  • 802.3af PoE Gigabit Injector, 1-Port User Manual
    User Manual for 802.3af PoE Gigabit Injector, 1-Port (2)
 

Product Data Sheets (pdf)...5.8-GHz 300-Mbps Wireless Ethernet Kit

  • Manual... 
  • Unmanaged 802.3at PoE Gigabit Ethernet Switch, 8-Port User Manual
    User Manual for Unmanaged 802.3at PoE Gigabit Ethernet Switch, 8-Port (1)
 
  • Manual... 
  • High-Density Media Converter System II Layer 2 Module User Manual
    User Manual for High-Density Media Converter System II Layer 2 Module (1)
 

Black Box Explains...LAN switches.



Rush hour-all day, every day.

Applications such as document imaging, video/multimedia production, and intranetworking are very demanding. They generate huge data files that often must be transferred... more/see it nowbetween stations based on strict timing requirements. If such traffic is not transmitted efficiently, you end up with jerky video, on-screen graphics that take forever to load, or other irritating, debilitating problems.


These problems arise because in traditional LANs, only one network node transmits data at a time while all other stations listen. This works in conventional, server-based LANs where multiple workstations share files or applications housed on a central server. But if a network has several servers, or if it supports high-bandwidth, peer-to-peer applications such as videoconferencing, the one-station-at-a-time model just doesn’t work.


Ideally, each LAN workstation should be configured with its own dedicated LAN cable segment. But that’s neither practical nor affordable. A far more reasonable solution is a network designed to provide clear paths from each workstation to its destination on demand, whether that destination is another workstation or server.


These vehicles clear the lanes.

Unlike bridges and routers, which process data packets on an individual, first-come, first-served basis, switches maintain multiple, simultaneous data conversions among attached LAN segments.


From the perspective of an end-user workstation, a switched circuit appears to be a dedicated connection-a direct, full-speed LAN link to an attached server or other remote LAN node. Although this technique is somewhat different from what a LAN bridge or router does, switching hubs are based on similar technologies.




Which route will you choose?

Switching hubs that use bridging technologies are called Layer 2 switches-a reference to Layer 2 or the Data-Link Layer of the OSI Model. These switches operate using the MAC addresses in Layer 2 and are transparent to network protocols. Switches that use routing technologies are known as Layer 3 switches, referring to Layer 3—the Network Layer—of the OSI Model. These switches, like routers, represent the next higher level of intelligence in the hardware hierarchy. Rather than passing packets based on MAC addresses, these switches look into the data structure and route it based on the network addresses found in Layer 3. They are also dependent on the network protocol.


Layer 2 switches connect different parts of the same network as determined by the network number contained with the data packet. Layer 3 switches connect LANs or LAN segments with different network numbers.


If you’re subdividing an existing LAN, obviously you’re dealing with only one network and one network number, so you can install a Layer 2 switch wherever it will segment network traffic the best, and you don’t have to reconfigure the LAN. However, if you use a Layer 3 switch, you’ll have to reconfigure the segments to ensure that each has a different network number.


Similarly, if you’re connecting existing networks, you have to examine the currently configured network numbers before adding a switch. If the network numbers are the same, you need to use a Layer 2 switch. If they’re different, you must use a Layer 3 switch.


When dealing with multiple existing networks, you’ll find they usually use different network numbers. In this case, it’s preferable to use a Layer 3 switch (or possibly even a full-featured router) to avoid reconfiguring the network.


But what if you’re designing a network from scratch and can choose either type of switch? Your decision should be based on the expected complexity of your LAN. Layer 3 routing technology is well suited for complex networks. Layer 2 switches are recommended for smaller, less complex networks.

collapse


Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse

  • Visio Stencil Drawing... 
  • Visio Stencil
    Stencil Drawings
 

Results 11-20 of 398 < 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services