Categories (x) > Networking (x)

Results 11-20 of 409 < 1 2 3 4 5 > >> 
  • Manual... 
  • LinkGain 10/100BASE-TX to 100BASE-FX Media Converter Manual
    Manual for the BMC300-MMST and LBMC300-MMSC (Version 1)
  • Manual... 
  • FlexPoint Media Converter User Manual
    User Manual for the LMC1017A-SFP, LMC1017A-MMST, LMC1017A-MMSC, LMC1017A-SMST, LMC1017A-SMSC, LMC1017A-SMSC-LH, & LMC1017AE (Version 1)
  • Manual... 
  • FlexPoint T1/E1 to Fiber Line Driver
    Installation and User Guide (Mar-06)
  • Quick Start Guide... 
  • Hardened Managed Ethernet Switch Quick Start Guide
    Quick Start Guide for the LEH1000 Series (Version 1)

Non-standard PoE

Because Power over Ethernet (PoE) delivers power over the same cable as data, it’s popular for powering devices such as VoIP phones, wireless access points, and security cameras. It often... more/see it nowleads to significant savings by eliminating the need to install a separate power outlet.

Most PoE today is standards-based IEEE 802.3af or the newer higher-powered IEEE 802.3at PoE, which are very safe because power source equipment (PSE) doesn’t add power to the data line unless it detects a compatible powered device (PD) connected to the other end of the cable. This protects devices that do not support PoE. PSEs and PDs also negotiate power requirements, so a PD never receives too much power. Both PSEs and PDs have power supplies and regulators isolated from ground to minimize shock hazard.

But here’s where it gets complicated…
Because most PoE available today is standards-based 802.3af or 802.3at, it’s easy to forget that there are versions of PoE that are NOT standards based. Some of these non-standards-based versions of PoE feature power injectors that inject power without checking compatibility—and that can be very bad news for an innocent network device.

Non-standard PoE tends to fall into three categories: proprietary PoE, high-wattage proprietary PoE, and passive PoE.

Proprietary PoE.
Before the ratification of the 802.3af standard in 2003, PoE was a free-for-all with many vendors offering their own method of delivering power over data lines. Some vendors still offer their own proprietary PoE. These proprietary solutions offer varying degrees of communication between PSE and PD. Our Black Box® Wireless Point-to-Point Ethernet Extender Kit (LWE100A-KIT) uses Prorietary PoE in the form of 12 VDC running at 12 W, which is well below the 48 VDC and 15.4 W provided by standard 802.3af.

High-wattage Proprietary PoE.
Many vendors offer high-wattage PoE solutions designed to deliver from 50 watts to 100 or even 200 watts per port. High-wattage proprietary PoE is often used with high-powered outdoor wireless radios.

Passive PoE.
Passive PoE injects power into an Ethernet cable on Pins 4 and 5 with negative return on Pins 7 and 8 and absolutely no communication between PSE and PD. This method was once a very common “home brew” method of transferring power over data cable and is still commonly used in telecomm applications.

Document and label.
There’s nothing wrong with PoE that’s not standards based—these power methods work as well as 802.3af/at PoE to power network devices. You do, however, need to be aware of what kind of Power over Ethernet you have and what it will work with. Good network documentation and labeling are the keys that enable you to know that, for instance, that power injector is a high-wattage proprietary injector that will fry the IP camera you’re about to connect. Proper documentation, which is good practice in any case, becomes absolutely vital when you have components that may damage other components.

Black Box Explains... Why go wireless?

• It’s great for communicating in harsh climates or in areas where it’s expensive to run cable. Wireless solutions are well suited for use in military applications, farming, refineries, mining,... more/see it nowconstruction, and field research.
• Because sometimes you just can’t run wire, like in historic buildings or hazmat areas.
• When it’s physically or legally impossible to support conventional hard-wired RS-232 communications, wireless networking may be your only answer.
• It gives you quick, temporary connections at trade shows, and fast reconfigurations—even troubleshooting or remote field testing.
• It provides reliable disaster relief when all else fails! Count on wireless networks to maintain mission-critical links when disaster strikes.
• It’s more affordable, more reliable, and faster than ever before.
• Best of all, no FCC licensing required! collapse

Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse

  • Manual... 
  • 1-Port 10/100 Device Server, RS-232/422/485, DB9 M
    (Version 1)
  • Firmware... 
  • 20 + 4 Port Gigabit Smart Switch (Eco Fanless) Firmware
    Firmware for the LGB2124A (Version v1.08)
Results 11-20 of 409 < 1 2 3 4 5 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Black Box 1-877-877-2269 Black Box Network Services