Loading


Categories (x) > Networking (x)
Content Type (x) > Black Box Explains (x)

Results 21-30 of 47 < 1 2 3 4 5 > 

Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet, sometimes called 10-GbE or 10 GigE, is the latest improvement on the Ethernet standard, ratified in 2003 for fiber as the 802.3ae standard, in 2004 for twinax cable... more/see it now as the 802.3ak standard, and in 2006 for UTP as the 802.3an standard.

10-Gigabit Ethernet offers ten times the speed of Gigabit Ethernet. This extraordinary throughput plus compatibility with existing Ethernet standards has resulted in 10-Gigabit Ethernet quickly becoming the new standard for high-speed network backbones, largely supplanting older technologies such as ATM over SONET. 10-Gigabit Ethernet has even made inroads in the area of storage area networks (SAN) where Fibre Channel has long been the dominant standard. This new Ethernet standard offers a fast, simple, relatively inexpensive way to incorporate super high-speed links into your network.

Because 10-Gigabit Ethernet is simply an extension of the existing Ethernet standards family, it’s a true Ethernet standard—it’s totally backwards compatible and retains full compatibility with 10-/100-/1000-Mbps Ethernet. It has no impact on existing Ethernet nodes, enabling you to seamlessly upgrade your network with straightforward upgrade paths and scalability.

10-Gigabit Ethernet is less costly to install than older high-speed standards such as ATM. And not only is it relatively inexpensive to install, but the cost of network maintenance and management also stays low—10-Gigabit Ethernet can easily be managed by local network administrators.

10-Gigabit Ethernet is also more efficient than other high-speed standards. Because it uses the same Ethernet frames as earlier Ethernet standards, it can be integrated into your network using switches rather than routers. Packets don’t need to be fragmented, reassembled, or translated for data to get through.

Unlike earlier Ethernet standards, which operate in half- or full-duplex, 10-Gigabit Ethernet operates in full-duplex only, eliminating collisions and abandoning the CSMA/CD protocol used to negotiate half-duplex links. It maintains MAC frame compatibility with earlier Ethernet standards with 64- to 1518-byte frame lengths. The 10-Gigabit standard does not support jumbo frames, although there are proprietary methods for accommodating them.

Fiber 10-Gigabit Ethernet standards
There are two groups of physical-layer (PHY) 10-Gigabit Ethernet standards for fiber: LAN-PHY and WAN-PHY.

LAN-PHY is the most common group of standards. It’s used for simple switch and router connections over privately owned fiber and uses a line rate of 10.3125 Gbps with 64B/66B encoding.

The other group of 10-Gigabit Ethernet standards, WAN-PHY, is used with SONET/SDH interfaces for wide area networking across cities, states—even internationally.

LAN-PHY
10GBASE-SR (Short-Range) is a serial short-range fiber standard that operates over two multimode fibers. It has a range of 26 to 82 meters (85 to 269 ft.) over legacy 62.5-µm 850-nm fiber and up to 300 meters (984 ft.) over 50-µm 850-nm fiber.

10GBASE-LR (Long-Range) is a serial long-range 10-Gbps Ethernet standard that operates at ranges of up to 25 kilometers (15.5 mi.) on two 1310-nm single-mode fibers.

10GBASE-ER (Extended-Range) is similar to 10GBASE-LR but supports distances up to 40 kilometers (24.9 mi.) over two 1550-nm single-mode fibers.

10GBASE-LX4 uses Coarse-Wavelength Division Multiplexing (CWDM) to achieve ranges of 300 meters (984 ft.) over two legacy 850-nm multimode fibers or up to 10 kilometers (6.2 mi.) over two 1310-nm single-mode fibers. This standard multiplexes four data streams over four different wavelengths in the range of 1300 nm. Each wavelength carries 3.125 Gbps to achieve 10-Gigabit speed.

WAN-PHY
In fiber-based Gigabit Ethernet, the 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER LAN-PHY standards have WAN-PHY equivalents called 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW. There is no WAN-PHY standard corresponding to 10GBASE-LX4.

WAN-PHY standards are designed to operate across high-speed systems such as SONET and SDH. These systems are often telco operated and can be used to provide high-speed data delivery worldwide. WAN-PHY 10-Gigabit Ethernet operates within SDH and SONET using an SDH/SONET frame running at 9.953 Gbps without the need to directly map Ethernet frames into SDH/SONET.

WAN-PHY is transparent to data—from the user’s perspective it looks exactly the same as LAN-PHY.

10-Gigabit Ethernet over Copper
10GBASE-CX4
10GBASE-CX4 is a standard that enables Ethernet to run over CX4 cable, which consists of four twinaxial copper pairs bundled into a single cable. CX4 cable is also used in high-speed InfiniBand® and Fibre Channel storage applications. Although CX4 cable is somewhat less expensive to install than fiber optic cable, it’s limited to distances of up to 15 meters. Because this standard uses such a specialized cable at short distances, 10GBASE-CX4 is generally used only in limited data center applications such as connecting servers or switches.

10GBASE-Kx
10GBASE-Kx is backplane 10-Gigabit Ethernet and consists of two standards. 10GBASE-KR is a serial standard compatible with 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER. 10GBASE-KX4 is compatible with 10GBASE-LX4. These standards use up to 40 inches of copper printed circuit board with two connectors in place of cable. These very specialized standards are used primarily for switches, routers, and blade servers in data center applications.

10GBASE-T
10GBASE-T is the 10-Gigabit standard that uses the familiar shielded or unshielded copper UTP cable. It operates at distances of up to 55 meters (180 ft.) over existing Category 6 cabling or up to 100 meters (328 ft.) over augmented Category 6, or “6a,” cable, which is specially designed to reduce crosstalk between UTP cables. Category 6a cable is somewhat bulkier than Category 6 cable but retains the familiar RJ-45 connectors.

To send data at these extremely high speeds across four-pair UTP cable, 10GBASE-T uses sophisticated digital signal processing to suppress crosstalk between pairs and to remove signal reflections.

10-Gigabit Ethernet Applications
> 10-Gigabit Ethernet is already being deployed in applications requiring extremely high bandwidth:
> As a lower-cost alternative to Fibre Channel in storage area networking (SAN) applications.
> High-speed server interconnects in server clusters.
> Aggregation of Gigabit segments into 10-Gigabit Ethernet trunk lines.
> High-speed switch-to-switch links in data centers.
> Extremely long-distance Ethernet links over public SONET infrastructure.

Although 10-Gigabit Ethernet is currently being implemented only by extremely high-volume users such as enterprise networks, universities, telecommunications carriers, and Internet service providers, it’s probably only a matter of time before it’s delivering video to your desktop. Remember that only a few years ago, a mere 100-Mbps was impressive enough to be called “Fast Ethernet.” collapse


Black Box Explains...How to maximize your wireless range.

There are four simple rules that enable you to transmit wireless communications up to their maximum range:
• Try to keep a direct line between the transmitter and receiver.
• Minimize... more/see it nowthe number of walls and ceilings between the transmitter and receiver. Such obstructions reduce the range.
• If there are obstructions, be sure the wireless signal passes through drywall or open doorways and not other materials.
• Keep the transmitter and receiver at least 3 to 6 feet (0.9 to 1.8 m) away from electrical devices or appliances, especially those that generate extreme RF noise. collapse


Black Box Explains... GBICs

A Gigabit Interface Converter (GBIC) is a transceiver that converts digital electrical currents to optical signals and back again. GBICs support speeds of 1 Gbps or more and are typically... more/see it nowused as an interface between a high-speed Ethernet or ATM switch and a fiber backbone. GBICs are hot-swappable, so switches don’t need to be powered down for their installation. collapse


Black Box Explains...PoE phantom power.

10BASE-T and 100BASE-TX Ethernet use only two pairs of wire in 4-pair CAT5/CAT5e/CAT6 cable, leaving the other two pairs free to transmit power for Power over Ethernet (PoE) applications. However,... more/see it nowGigabit Ethernet or 1000BASE-T uses all four pairs of wires, leaving no pairs free for power. So how can PoE work over Gigabit Ethernet?

The answer is through the use of phantom power—power sent over the same wire pairs used for data. When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

10- and 100-Mbps PoE may also use phantom power. The 802.3af PoE standard for use with 10BASE-T and 100BASE-TX defines two methods of power transmission. In one method, called Alternative A, power and data are sent over the same pair. In the other method, called Alternative B, two wire pairs are used to transmit data, and the remaining two pairs are used for power. That there are two different PoE power-transmission schemes isn’t obvious to the casual user because PoE Powered Devices (PDs) are made to accept power in either format. collapse


Black Box Explains...RS-232.

RS-232, also known as RS-232C and TIA/EIA-232-E, is a group of electrical, functional, and mechanical specifications for serial interfaces between computers, terminals, and peripherals. The RS-232 standard was developed by... more/see it nowthe Electrical Industries Association (EIA), and defines requirements for connecting data communications equipment (DCE)—modems, converters, etc.—and data terminal equipment (DTE)—computers, controllers, etc.) devices. RS-232 transmits data at speeds up to 115 Kbps and over distances up to 50 feet (15.2 m).

The standard, which is functionally equivalent to ITU V.24/V.28, specifies the workings of the interface, circuitry, and connector pinning. Both sync and async binary data transmission fall under RS-232. Although RS-232 is sometimes still used to transmit data from PCs to peripheral devices, the most common uses today are for network console ports and for industrial devices.

Even though RS-232 is a “standard,” you can’t necessarily expect seamless communication between two RS-232 devices. Why? Because different devices have different circuitry or pinning, and different wires may be designated to perform different functions.

The typical RS-232 connector is DB25, but some PCs and other data communication devices have DB9 connectors and many newer devices have RJ-45 RS-232 ports. To connect 9-pin PC ports or RJ-45 to devices with 25-pin connectors, you will require a simple adapter cable. collapse


Black Box Explains…Fiber Ethernet adapters vs. media converters.

When running fiber to the desktop, you have two choices for making the connection from the fiber to a PC: a fiber Ethernet adapter or a media converter like our... more/see it nowMicro Mini Media Converter.

Fiber Ethernet adapters:

  • Less expensive.
  • Create no desktop clutter, but the PC must be opened.
  • Powered from the PC—require no separate power provision.
  • Require an open PCI or PCI-E slot in the PC.
  • Can create driver issues that must be resolved.
  • May be required in high-security installations that require a 100% fiber link to the desktop.

  • Media converters:
  • More expensive.
  • No need to open the PC but can create a cluttered look.
  • Powered from an AC outlet or a PC’s USB port.
  • Don’t require an open slot in the PC.
  • Plug-and-play installation—totally transparent to data, so there are no driver problems; install in seconds.
  • The short copper link from media converter to PC may be a security vulnerability.
  • collapse


    Black Box Explains...Choosing a wireless antenna.


    Ride the wave.

    One of the most critical components to operating a successful wireless network is having the right antennas. Antennas come in many different shapes and sizes,... more/see it noweach designed for a specific function. Selecting the right antennas for your network is crucial to achieving optimum network performance. In addition, using the right antennas can decrease your networking costs since you’ll need fewer antennas and access points.


    Basically, a wireless network consists of data, voice, and video information packets being transmitted over low-frequency radio waves instead of electrically over copper cable or via light over fiber lines. The antenna acts as a radiator and transmits waves through the air, just like radio and TV stations. Antennas also receive the waves from the air and transport them to the receiver, which is a radio, TV, or in the case of wireless networking, a router or an access point.


    Type cast.

    The type of antennas you use depends on what type of network you’re setting up and the coverage you need. How large is your network? Is it for a home, single office, campus, or larger? Is it point-to-point or multipoint?


    The physical design-walls, floors, etc.- of the building(s) you’re working in also affects the type and number of antennas you need. In addition, physical terrain affects your antenna choices. Obviously, a clear line of sight works best, but you need to consider obstructions such as trees, buildings, hills, and water. (Radio waves travel faster over land than water.) You even need to consider traffic noise in urban settings.


    The ideal shape.

    Let’s take a look at the different types of antennas.


    Isotropic Antenna. First, think of the introduction to the old RKO movies. A huge tower sits on top of the world and emanates circular waves in all directions. If you could actually see the waves, they would form a perfect sphere around the tower. This type of antenna is called an isotropic antenna, and does not exist in the real world. It is theoretical and is used as a base point for measuring actual antennas.


    Go in the right direction.

    Now let’s turn to real-world antennas. There are many types of antennas that emit radio waves in different directions, shapes, and on different planes. Think of the spherical isotropic antenna. If squeezed from the sides, it will become shaped like a wheel and will concentrate waves on a vertical plane. If squeezed from the top, it will flatten out like a pancake and radiate waves on a horizontal plane. Thus, there are two basic types of antennas: directional and omnidirectional.


    Directional antennas.

    Directional antennas, primarily used in point-to-point networks, concentrate the waves in one direction much like a flashlight concentrates light in a narrow beam. Directional antennas include backfire, Yagi, dish, panel, and sector.


    Backfire. This small directional antenna looks like a cake pan with a tin can in the middle. It’s designed to be compact, often under 11" in diameter, making it unobtrusive and practical for outdoor use. These antennas also offer excellent gain, and can be used in both point-to-point or point-to-multipoint systems.


    Yagi. The Yagi-Uda (or Yagi) antenna is named for its Japanese inventors. The antenna was originally intended for radio use and is now frequently used in 802.11 wireless systems.


    A Yagi antenna is highly directional. It looks like a long fishbone with a central spine and perpendicular rods or discs at specified intervals. Yagi antennas offer superior gain and highly vertical directionality. The longer the Yagi, the more focused its radiation is. Many outdoor Yagi antennas are covered in PVC so you can’t see the inner structure.


    Yagi antennas are good for making point-to-point links in long narrow areas (for instance, connecting to a distant point in a valley) or for point-to-point links between buildings. They can also be used to extend the range of a point-to-multipoint network.


    Parabolic or Dish. These antennas look like a circular or rectangular concave bowl or "dish". The backboard can be solid or a grid design. Parabolic grid designs are excellent for outdoor use since the wind blows right through them. The concave nature of this dish design focuses energy into a narrow beam that can travel long distances, even up to several miles. This makes parabolic antennas ideal for point-to-point network connections. Since they generate a narrow beam in both the horizontal and vertical planes, offer excellent gain, and minimize interference, they’re ideal for long-distance point-to-point networks.


    Panel or Patch. These antennas are often square or rectangular, and they’re frequently hung on walls. They’re designed to radiate horizontally forward and to the side, but not behind them. Sometimes they’re called "picture-frame" antennas.


    Panel antennas are ideal in applications where the access point is at one end of a building. They’re good for penetrating a single floor of a building, and for small and medium-size homes and offices. Since they might not have much vertical radiation, they might not be a good choice for multifloor applications.


    Because panel antennas can be easily concealed, they’re a good choice when aesthetics are important.


    Sector. A sector antenna can be any type of antenna that directs the radio waves in a specific area. They are often large, outdoor flat-panel or dish-type antennas mounted up high and tilted downward toward the ground. These antennas are often used in sprawling campus settings to cover large areas.


    Omnidirectional antennas.

    Omnidirectional antennas provide the widest coverage possible and are generally used in point-to-multipoint networks. Their range can be extended by overlapping circles of coverage from multiple access points. Most omnidirectional antennas emanate waves in a fan-shaped pattern on a horizontal plane. Overall, omnidirectional antennas have lower gain than directional antennas. Examples of omnidirectional antennas include: integrated, blade, and ceiling.


    Integrated. Integrated antennas are antennas that are built into wireless networking devices. They may be embedded in PC card client adapters or in the covers or body of laptops or other devices, such as access points. Integrated antennas often do not offer the same reception as external antennas and might not pick up weak signals. Access points with integral antennas must often be moved or tilted to get the best reception.


    Blade. These small, omnidirectional antennas are often housed in long, thin envelopes of plastic. They are most often used to pick up a signal in a low-signal or no-signal spot. You usually will see them on the walls of cubicles, mounted on desktops, or even hung above cubicles to catch signals. They’re basically an inexpensive signal booster.


    Ceiling Dome. These are sometimes also called ceiling blister antennas. They look somewhat like a smoke detector and are designed for unobtrusive use in ceilings, particularly drop ceilings. Ceiling dome antennas often have a pigtail for easy connection to access points. They’re excellent for use in corporate environments where wide coverage over a cube farm is needed.


    Wave basics.

    To better understand wireless antennas and networking, there are some basic measurements and terms that need to be discussed.


    Gain. One of the primary measurements of antennas is gain. Gain is measured as dBi, which is how much the antenna increases the transmitter’s power compared to the theoretical isotropic antenna, which has a gain of 0 dBi. dBi is the true gain the antenna provides to the transmitter’s output. Gain is also reciprocal-it’s the same transmitting and receiving. Higher gain means stronger sent and received signals. An easy way to remember gain basics is that every 3 dB of gain added doubles the effective power output of an antenna. The more an antenna concentrates a signal, the higher the gain it will have.


    You can actually calculate the gains and losses of a system by adding up the gains and losses of its parts in decibels.


    Frequency and Wavelength. Electromagnetic waves are comprised of two components: frequency and wavelength.


    Frequency is how many waves occur each second. Wavelength is the distance between one peak of a wave and the next peak. Lower frequencies have longer wavelengths; higher frequencies have shorter wavelengths. For example, the frequency of AM radio is 1 MHz with a wavelength of about 1000 feet. FM radios operate at a much higher frequency of 100 MHz and have a wavelength of about 100 feet.


    The two most common frequencies for wireless networking are 2.4-GHz and 5-GHz. Both are very high frequencies with very short wavelengths in the microwave band. The 2.4-GHz frequency has a wavelength of about 5 inches.


    Beamwidth. Consider an antenna to be like a flashlight or spotlight. It reflects and directs the light (or radio waves) in a particular direction. Beamwidth actually measures how energy is focused or concentrated.


    Polarization. This is the direction in which the antenna radiates wavelengths, either vertically, horizontally, or circularly. Vertical antennas have vertical polarization and are the most common. For optimum performance, it is important that the sending and receiving antennas have the same polarization.


    VSWR and Return Loss. Voltage Standing Wave Ratio (VSWR) measures how well the antenna is matched to the network at the operating frequency being used. It indicates how much of the received signal won’t reach either the transceiver or receiver. Return loss measures how well matched an antenna is to the network. Typical VSWR numbers are 1:1.2 or 1:1.5. A typical return loss number is 20.

    collapse


    Black Box Explains…Media converters that also work as switches.

    Media converters transparently convert the incoming electrical signal from one cable type and then transmit it over another type—thick coax to Thin, UTP to fiber, and so on. Traditionally, media... more/see it nowconverters were purely Layer 1 devices that only converted electrical signals and physical media and didn’t do anything to the data coming through the link.

    Today’s media converters, however, are often more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services and route Ethernet packets based on MAC address. These media converters are often called media converter switches, switching media converters, or Layer 2 media converters. They enable you to have multiple connections rather than just one simple in-and-out connection. And because they’re switches, they increase network efficiency.

    Media converters are often used to connect newer 100-Mbps, Gigabit Ethernet, or ATM equipment to existing networks, which are generally 10BASE-T, 100BASE-T, or a mixture of both. They can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference.

    Rent an apartment…
    Media converters are available in standalone models that convert between two different media types and in chassis-based models that house many media converters in a a single chassis.

    Standalone models convert between two media. But, like a small apartment, they can be outgrown.

    Consider your current and future applications before selecting a media converter. A good way to anticipate future network requirements is to choose media converters that work as standalone devices but can be rackmounted if needed later.

    …or buy a house.
    Chassis-based or modular media converter systems are normally rackmountable and have slots to house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and they enable you to mix different media types such as 10BASE-T, 100BASE-TX, 100BASE-FX, ATM, and Gigabit modules. Although enterprise-level chassis-based systems generally have modules that can only be used in a chassis, many midrange systems feature modules that can be used individually or in a chassis. collapse


    Black Box Explains...Terminal Servers

    A terminal server (sometimes called a serial server) is a hardware device that enables you to connect serial devices across a network.

    Terminal servers acquired their name because they were originally... more/see it nowused for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

    The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

    Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

    Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. If, however, you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


    Black Box Explains...Gigabit Ethernet.

    As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

    Compatibility
    Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

    The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

    One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

    Affordability and adaptability
    You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

    Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

    When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

    1000BASE-X
    1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

    1000BASE-SX
    The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

    1000BASE-LX
    The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

    1000BASE-CX
    The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

    Gigabit over CAT5—1000BASE-TX
    The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

    Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse

    Results 21-30 of 47 < 1 2 3 4 5 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-800-316-7107 Black Box Network Services