Loading


Categories (x) > Networking (x)
Content Type (x) > Black Box Explains (x)

Results 11-20 of 47 < 1 2 3 4 5 > 

The ANSI/ISA Standard and Hazardous Locations

Fires and explosions are a major safety concern in industrial plants. Electrical equipment that must be installed in these locations should be specifically designed and tested to operate under extreme... more/see it nowconditions. The hazardous location classification system was designed to promote the safe use of electrical equipment in those areas “where fire or explosion hazards may exist due to flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers of flyings.”

The NEC and CSA define hazardous locations by three classes:
Class 1: Gas or vapor hazards
Class 2: Dust hazards
Class 3: Fibers and flyings

Two divisions:
Division 1: An environment where ignitable gases, liquids, vapors or dusts can exist Division 2: Locations where ignitables are not likely to exist

Hazardous classes are further defined by groups A, B, C, D, E, F, and G:
A. Acetylene
B. Hydrogen
C. Ethlene, carbon monoxide
D. Hydrocarbons, fuels, solvents
E. Metals
F. Carbonaceous dusts including coal, carbon black, coke
G. Flour, starch, grain, combustible plastic or chemical dust

ANSI/ISA 12.12.01
Our line of Industrial Ethernet Switches (LEH1208A, LEH1208A-2GMMSC, LEH1216A and LEH1216A-2GMMSC) is fully compliant with ANSI/ISA 12.12.01, a construction standard for Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations. ANSI/ISA 12.12.01-2000 is similar to UL1604, but is more stringent (for a full list of changes, see Compliance Today). UL1604 was withdrawn in 2012 and replaced with ISA 12.12.01.

The standard provides the requirements for the design, construction, and marking of electrical equipment or parts of such equipment used in Class I and Class II, Division 2 and Class III, Divisions 1 and 2 hazardous (classified) locations. This type of equipment, in normal operation, is not capable of causing ignition.

The standard establishes uniformity in test methods for determining the suitability of equipment as related to their potential to ignite to a specific flammable gas or vapor-in-air mixture, combustible dust, easily ignitable fibers, or flyings under the following ambient conditions:
a) an ambient temperature of -25°C to 40°C.
b) an oxygen concentration of not greater than 21 percent by volume.
c) a pressure of 80 kPa (0.8 bar) to 110 kPa (1.1 bar).

The standard is available for purchase at www.webstore.ansi.org. To learn more about ANSI/ISA 12.12.01 and hazardous location types, visit https://www.osha.gov/doc/outreachtraining/htmlfiles/hazloc.html. -- collapse


Black Box Explains...DIN rail usage.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...Remote access.

Remote access is the ability to access a network, a personal computer, a server, or other device from a distance for the purpose of controlling it or to access data.... more/see it nowToday, remote access is usually accomplished over the Internet, although a local IP network, telephone lines, cellular service, or leased lines may also be used. With today’s ubiquitous Internet availability, remote access is increasingly popular and often results in significant cost savings by enabling greater network access and reducing travel to remote sites. Remote access is a very general term that covers a wide range of applications from telecommuting to resetting a distant server. Here are just a few of the applications that fall under the remote access umbrella:

Remote network access
A common use for remote access is to provide corporate network access to employees who work at home or are in sales or other traveling positions. This kind of remote access typically uses IPsec VPN tunnels to authenticate and secure connections.

Remote desktop access
Remote desktop access enables users to access a computer remotely from another computer and take control of it as if it were local. This kind of remote control requires that special software—which is included with most operating systems—be installed and enabled. It’s often used by those who travel frequently to access their “home” computer, and by network administrators for remote server access. This remote access method has some inherent security concerns and is usually incompatible with firewalls, so it’s important to be aware of its limitations and use adequate security precautions.

Remote KVM access
A common application in organizations that maintain servers across multiple sites is server administration through an IP-enabled KVM switch. These IP-addressable switches support one or more servers and have an integral Web server, enabling users to access them over the Internet through a Web browser. Because they’re intended for Internet use, these switches offer authentication and encryption for secure connections.

Remote power management
Anyone who’s ever had to get out of bed in the middle of the night to go switch a server off and back on again to reset it can appreciate the convenience of remote power management. Remote power managers have a wide range of capabilities ranging from simple power switching to reboot a device to sophisticated power monitoring, reporting, and management functions.

Remote environmental security monitoring
Remote environmental and security monitoring over the Internet is increasingly popular, largely because of the cost savings of using existing network infrastructure rather than a proprietary security system. This application requires IP-addressable hubs that support a variety of sensors ranging from temperature and humidity to power monitors. Some models even support surveillance cameras. collapse


Black Box Explains...Virtual LANs (VLANs).

True to their name, VLANs are literally “virtual“ LANs—mini subLANs that, once configured, can exist and function logically as single, secure network segments, even though they may be part of... more/see it nowa much larger physical LAN.

VLAN technology is ideal for enterprises with far-reaching networks. Instead of having to make expensive, time-consuming service calls, system administrators can configure or reconfigure workstations easily or set up secure network segments using simple point-and-click, drag-and-drop management utilities. VLANs provide a way to define dynamic new LAN pathways and create innovative virtual network segments that can range far beyond the traditional limits of geographically isolated workstation groups radiating from centralized hubs.

For instance, using VLAN switches, you can establish a secure VLAN made up of select devices located throughout your enterprise (managers’ workstations, for example) or any other device that you decide requires full access to the VLAN you’ve created.

According to Cisco, a VLAN is a switched network logically segmented by functions, project teams, or applications regardless of the physical location of users. You can assign each switch port to a different VLAN. Ports configured in the same VLAN share broadcasts; ports that don’t belong to the VLAN don’t share the data.

VLAN switches group users and ports logically across the enterprise—they don’t impose physical constraints like in a shared-hub architecture. In replacing shared hubs, VLAN switches remove the physical barriers imposed by each wiring closet.

To learn more about smart networking with VLANs, call the experts in our Local Area Network Support group at 724-746-5500, press 1, 2, 4. collapse


Black Box Explains...Wireless Ethernet standards.

IEEE 802.11
The precursor to 802.11b, IEEE 802.11 was introduced in 1997. It was a beginning, but 802.11 only supported speeds up to 2 Mbps. And it supported two entirely different... more/see it nowmethods of encoding—Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). This led to confusion and incompatibility between different vendors’ equipment.

IEEE 802.11b
802.11b is comfortably established as the most popular wireless standard. With the IEEE 802.11b Ethernet standard, wireless is fast, easy, and affordable. Wireless devices from all vendors work together seamlessly. 802.11b is a perfect example of a technology that has become both sophisticated and standardized enough to really make life simpler for its users.

The 802.11b extension of the original 802.11 standard boosts wireless throughput from 2 Mbps all the way up to 11 Mbps. 802.11b can transmit up to 200 feet under good conditions, although this distance may be reduced considerably by the presence of obstacles such as walls.

This standard uses DSSS. With DSSS, each bit transmitted is encoded and the encoded bits are sent in parallel across an entire range of frequencies. The code used in a transmission is known only to the sending and receiving stations. By transmitting identical signals across the entire range of frequencies, DSSS helps to reduce interference and makes it possible to recover lost data without retransmission.

IEEE 802.11a
The 802.11a wireless Ethernet standard is new on the scene. It uses a different band than 802.11b—the 5.8-GHz band called U-NII (Unlicensed National Information Infrastructure) in the United States. Because the U-NII band has a higher frequency and a larger bandwidth allotment than the 2.4-GHz band, the 802.11a standard achieves speeds of up to 54 Mbps. However, it’s more limited in range than 802.11b. It uses an orthogonal frequency-division multiplexing (OFDM) encoding scheme rather than FHSS or DSSS.

IEEE 802.11g
802.11g is an extension of 802.11b and operates in the same 2.4-GHz band as 802.11b. It brings data rates up to 54 Mbps using OFDM technology.

Because it's actually an extension of 802.11b, 802.11g is backward-compatible with 802.11b—an 802.11b device can interface directly with an 802.11g access point. However, because 802.11g also runs on the same three channels as 802.11b, it can crowd already busy frequencies.

Super G® is a subset of 802.11g and is a proprietary extension of the 802.11g standard that doubles throughput to 108 Mbps. Super G is not an IEEE approved standard. If you use it, you should use devices from one vendor to ensure compatibility. Super G is generally backwards compatible with 802.11g.

802.11n
80211n improves upon 802.11g significantly with an increase in the data rate to 600 Mbps. Channels operate at 40 MHz doubling the channel width from 20 MHz. 802.11n operates on both the 2.4 GHz and the 5 GHz bands. 802.11n also added multiple-input multiple-output antennas (MIMO).

MIMO
Multiple-Input/Multiple-Output (MIMO) is a part of the new IEEE 802.11n wireless standard. It’s a technique that uses multiple signals to increase the speed, reliability, and coverage of wireless networks. It transmits multiple datastreams simultaneously, increasing wireless capacity to up to 100 or even 250 Mbps.

This wireless transmission method takes advantage of a radio transmission characteristic called multipath, which means that radio waves bouncing off surfaces such as walls and ceilings will arrive at the antenna at fractionally different times. This characteristic has long been considered to be a nuisance that impairs wireless transmission, but MIMO technology actually exploits it to enhance wireless performance.

MIMO sends a high-speed data stream across multiple antennas by breaking it into several lower-speed streams and sending them simultaneously. Each signal travels multiple routes for redundancy.

To pick up these multipath signals, MIMO uses multiple antennas and compares signals many times a second to select the best one. A MIMO receiver makes sense of these signals by using a mathematical algorithm to reconstruct the signals. Because it has multiple signals to choose from, MIMO achieves higher speeds at greater ranges than conventional wireless hardware does. collapse


Black Box Explains... Why go wireless?

• It’s great for communicating in harsh climates or in areas where it’s expensive to run cable. Wireless solutions are well suited for use in military applications, farming, refineries, mining,... more/see it nowconstruction, and field research.
• Because sometimes you just can’t run wire, like in historic buildings or hazmat areas.
• When it’s physically or legally impossible to support conventional hard-wired RS-232 communications, wireless networking may be your only answer.
• It gives you quick, temporary connections at trade shows, and fast reconfigurations—even troubleshooting or remote field testing.
• It provides reliable disaster relief when all else fails! Count on wireless networks to maintain mission-critical links when disaster strikes.
• It’s more affordable, more reliable, and faster than ever before.
• Best of all, no FCC licensing required! collapse


Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • Converters and Scalers Selector
    PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms
    collapse


    Black Box Explains…SFP compatibility.

    Standards for SFP fiber optic media are published in the SFP Multi-Source Agreement, which specifies size, connectors, and signaling for SFPs, with the idea that all SFPs are compatible with... more/see it nowdevices that have appropriate SFP slots. These standards, which also extend to SFP+ and XFP transceivers, enable users to mix and match components from different vendors to meet their own particular requirements.

    However, some major manufacturers, notably Cisco®, HP®, and 3Com®, sell network devices with SFP slots that lock out transceivers from other vendors. Because the price of SFPs—especially Gigabit SFPs and 10GBASE SFP+ and XFP transceivers—can add significantly to the price of a switch, this lock-out scheme raises hardware costs and limits transceiver choices.

    Many vendors don’t advertise that SFP slots on their devices don’t accept standard SFPs from other vendors. This can lead to unpleasant surprises when a device simply refuses to communicate with an SFP.

    Another game that some vendors play is to build devices that accept open-standard SFPs, but refuse to support those devices when SFPs from another vendor are used with them.

    The only way around this “lock-in” practice is to only buy network devices that accept standard SFPs from all vendors and to buy from vendors that support their devices no matter whose SFPs are used with them. Questions? Call our FREE Tech Support at 724-746-5500. collapse


    Black Box Explains... How Autocross conversion can work for you.

    When using media converters with 10BASE-T or 100BASE-TX cable, you may need to connect your converter to a non-hub device such as a PC or printer.

    According to IEEE 802.3 Ethernet... more/see it nowstandards, media converters originally needed a specially pinned crossover cable to connect to PCs. The crossover cable matches the devices’ transmit and receive pins. Now there are media converters that use straight-pinned 10BASE-T patch cable but incorporate an uplink or crossover connection—a switch on the converter that’s set to support the PC-to-converter connection. By setting the uplink switch to “cross,” the converter’s internal mechanism crosses the pins on the RJ-45 connector to simulate a crossover cable.

    Autocross conversion eliminates both the need to crosspin cables and set an uplink switch. It adapts to the pin assignment of the twisted-pair cable whether it’s crossed or uncrossed. And because it senses the pin configuration of any cable pinned to Ethernet specifications, it adjusts automatically without user configuration. collapse


    Black Box Explains...T1 and E1.

    If you manage a heavy-traffic data network and demand high bandwidth for high speeds, you need digital super-fast T1 or E1.

    Both T1 and E1 are foundations of global communications. Developed... more/see it nowmore than 35 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but they’re much faster. T1, used primarily in the U.S., sends data up to 1.544 Mbps; E1, used primarily in Europe, supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there fast!

    T1 and E1 are versatile, too. Drive a private, point-to-point line; provide corporate access to the Internet; enable inbound access to your Web Server—even support a voice/data/fax/video WAN that extends halfway around the world! T1 and E1 are typically used for:
    • Accessing public Frame Relay networks or Public Switched Telephone Networks (PSTNs) for voice or fax.
    • Merging voice and data traffic. A single T1 or E1 line can support voice and data simultaneously.
    • Making super-fast LAN connections. Today’s faster Ethernet speeds require the very high throughput provided by one or more T1 or E1 lines.
    • Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other large files.

    Scaling T1
    Basic T1 service supplies a bandwidth of 1.536 Mbps. However, many of today’s applications demand much more bandwidth. Or perhaps you only need a portion of the 1.536 Mbps that T1 supplies. One of T1’s best features is that it can be scaled up or down to provide just the right amount of bandwidth for any application.

    A T1 channel consists of 24 64-kbps DS0 (Digital Signal [Zero]) subchannels that combine to provide 1.536 Mbps throughput. Because they enable you to combine T1 lines or to use only part of a T1, DS0s make T1 a very flexible standard.

    If you don’t need 1.536 Mbps, your T1 service provider can rent you a portion of a T1 line, called Fractional T1. For instance, you can contract for half a T1 line—768 kbps—and get the use of DS0s 1–12. The service provider is then free to sell DS0s 13–24 to another customer.

    If you require more than 1.536 Mbps, two or more T1 lines can be combined to provide very-high-speed throughput. The next step up from T1 is T1C; it offers two T1 lines multiplexed together for a total throughput of 3.152 on 48 DS0s. Or consider T2 and get 6.312 Mbps over 96 DS0s by multiplexing four T1 lines together to form one high-speed connection.

    Moving up the scale of high-speed T1 services is T3. T3 is 28 T1 lines multiplexed together for a blazing throughput of 44.736 Mbps, consisting of 672 DS0s, each of which supports 64 kbps.

    Finally there’s T4. It consists of 4032 64-kbps DS0 subchannels for a whopping 274.176 Mbps of bandwidth—that’s 168 times the size of a single T1 line!

    These various levels of T1 service can by implemented simulta-neously within a large enterprise network. Of course, this has the potential to become somewhat overwhelming from a management standpoint. But as long as you keep track of DS0s, you always know exactly how much bandwidth you have at your disposal.

    T1’s cousin, E1, can also have multiple lines merged to provide greater throughput. collapse

    Results 11-20 of 47 < 1 2 3 4 5 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-800-316-7107 Black Box Network Services