Categories (x) > Networking (x)
Content Type (x) > Black Box Explains (x)

Results 11-20 of 49 < 1 2 3 4 5 > 

Black Box Explains...Single-strand fiber WDM.

Traditional fiber optic media converters perform a useful function but don’t really reduce the amount of cable needed to send data on a fiber segment. They still require two strands... more/see it nowof glass to send transmit and receive signals for fiber media communications. Wouldn’t it be better to combine these two logical communication paths within one strand?

That’s exactly what single-strand fiber conversion does. It compresses the transmit and receive wavelengths into one single-mode fiber strand.

The conversion is done with Wave-Division Multiplexing (WDM) technology. WDM technology increases the information-carrying capacity of optical fiber by transmitting two signals simultaneously at different wavelengths on the same fiber. The way it usually works is that one unit transmits at 1310 nm and receives at 1550 nm. The other unit transmits at 1550 nm and receives at 1310 nm. The two wavelengths operate independently and don’t interfere with each other. This bidirectional traffic flow effectively converts a single fiber into a pair of “virtual fibers,” each driven independently at different wavelengths.

Although most implementations of WDM on single-strand fiber offer two channels, four-channel versions are just being introduced, and versions offering as many as 10 channels with Gigabit capacity are on the horizon.

WDM on single-strand fiber is most often used for point-to-point links on a long-distance network. It’s also used to increase network capacity or relieve network congestion. collapse


xDSL, a term that encompasses the broad range of digital subscriber line (DSL) services, offers a low-cost, high-speed data transport option for both individuals and businesses, particularly in areas without... more/see it nowaccess to cable Internet.

xDSL provides data transmission over copper lines, using the local loop, the existing outside-plant telephone cable network that runs right to your home or office. DSL technology is relatively cheap and reliable.

SHDSL can be used effectively in enterprise LAN applications. When interconnecting sites on a corporate campus, buildings and network devices often lie beyond the reach of a standard Ethernet segment. Now you can use existing copper network infrastructure to connect remote LANS across longer distances and at higher speeds than previously thought possible.

There are various forms of DSL technologies, all of which face distance issues. The quality of the signals goes down with increasing distance. The most common will be examined here, including SHDSL, ADSL, and SDSL.

SHDSL (also known as G.SHDSL) (Single-Pair, High-Speed Digital Subscriber Line) transmits data at much higher speeds than older versions of DSL. It enables faster transmission and connections to the Internet over regular copper telephone lines than traditional voice modems can provide. Support of symmetrical data rates makes SHDSL a popular choice for businesses for PBXs, private networks, web hosting, and other services.

Ratified as a standard in 2001, SHDSL combines ADSL and SDSL features for communications over two or four (multiplexed) copper wires. SHDSL provides symmetrical upstream and downstream transmission with rates ranging from 192 kbps to 2.3 Mbps. As a departure from older DSL services designed to provide higher downstream speeds, SHDSL specified higher upstream rates, too. Higher transmission rates of 384 kbps to 4.6 Mbps can be achieved using two to four copper pairs. The distance varies according to the loop rate and noise conditions.

For higher-bandwidth symmetric links, newer G.SHDSL devices for 4-wire applications support 10-Mbps rates at distances up to 1.3 miles (2 km). Equipment for 2-wire deployments can transmit up to 5.7 Mbps at the same distance.

SHDSL (G.SHDSL) is the first DSL standard to be developed from the ground up and to be approved by the International Telecommunication Union (ITU) as a standard for symmetrical digital subscriber lines. It incorporates features of other DSL technologies, such as ADSL and SDS, and is specified in the ITU recommendation G.991.2.

Also approved in 2001, VDSL (Very High Bitrate DSL) as a DSL service allows for downstream/upstream rates up to 52 Mbps/16 Mbps. Extenders for local networks boast 100-Mbps/60-Mbps speeds when communicating at distances up to 500 feet (152.4 m) over a single voice-grade twisted pair. As a broadband solution, VDSL enables the simultaneous transmission of voice, data, and video, including HDTV, video on demand, and high-quality videoconferencing. Depending on the application, you can set VDSL to run symmetrically or asymmetrically.

VDSL2 (Very High Bitrate DSL 2), standardized in 2006, provides a higher bandwidth (up to 30 MHz) and higher symmetrical speeds than VDSL, enabling its use for Triple Play services (data, video, voice) at longer distances. While VDSL2 supports upstream/downstream rates similar to VDSL, at longer distances, the speeds don’t fall off as much as those transmitted with ordinary VDSL equipment.

ADSL (Asymmetric DSL) provides transmission speeds ranging from downstream/upstream rates of 9 Mbps/640 kbps over a relatively short distance to 1.544 Mbps/16 kbps as far away as 18,000 feet. The former speeds are more suited to a business, the latter more to the computing needs of a residential customer.

More bandwidth is usually required for downstream transmissions, such as receiving data from a host computer or downloading multimedia files. ADSL’s asymmetrical nature provides more than sufficient bandwidth for these applications.

The lopsided nature of ADSL is what makes it most likely to be used for high-speed Internet access. And the various speed/distance options available within this range are one more point in ADSL’s favor. Like most DSL services standardized by ANSI as T1.413, ADSL enables you to lease and pay for only the bandwidth you need.

SDSL (Symmetric DSL) represents the two-wire version of HDSL—which is actually symmetric DSL, albeit a four-wire version. SDSL is also known within ANSI as HDSL2.

Essentially offering the same capabilities as HDSL, SDSL offers T1 rates (1.544 Mbps) at ranges up to 10,000 feet and is primarily designed for business applications.


Black Box Explains...PoE phantom power.

10BASE-T and 100BASE-TX Ethernet use only two pairs of wire in 4-pair CAT5/CAT5e/CAT6 cable, leaving the other two pairs free to transmit power for Power over Ethernet (PoE) applications. However,... more/see it nowGigabit Ethernet or 1000BASE-T uses all four pairs of wires, leaving no pairs free for power. So how can PoE work over Gigabit Ethernet?

The answer is through the use of phantom power—power sent over the same wire pairs used for data. When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

10- and 100-Mbps PoE may also use phantom power. The 802.3af PoE standard for use with 10BASE-T and 100BASE-TX defines two methods of power transmission. In one method, called Alternative A, power and data are sent over the same pair. In the other method, called Alternative B, two wire pairs are used to transmit data, and the remaining two pairs are used for power. That there are two different PoE power-transmission schemes isn’t obvious to the casual user because PoE Powered Devices (PDs) are made to accept power in either format. collapse

Black Box Explains...Choosing a wireless antenna.

Ride the wave.

One of the most critical components to operating a successful wireless network is having the right antennas. Antennas come in many different shapes and sizes,... more/see it noweach designed for a specific function. Selecting the right antennas for your network is crucial to achieving optimum network performance. In addition, using the right antennas can decrease your networking costs since you’ll need fewer antennas and access points.

Basically, a wireless network consists of data, voice, and video information packets being transmitted over low-frequency radio waves instead of electrically over copper cable or via light over fiber lines. The antenna acts as a radiator and transmits waves through the air, just like radio and TV stations. Antennas also receive the waves from the air and transport them to the receiver, which is a radio, TV, or in the case of wireless networking, a router or an access point.

Type cast.

The type of antennas you use depends on what type of network you’re setting up and the coverage you need. How large is your network? Is it for a home, single office, campus, or larger? Is it point-to-point or multipoint?

The physical design-walls, floors, etc.- of the building(s) you’re working in also affects the type and number of antennas you need. In addition, physical terrain affects your antenna choices. Obviously, a clear line of sight works best, but you need to consider obstructions such as trees, buildings, hills, and water. (Radio waves travel faster over land than water.) You even need to consider traffic noise in urban settings.

The ideal shape.

Let’s take a look at the different types of antennas.

Isotropic Antenna. First, think of the introduction to the old RKO movies. A huge tower sits on top of the world and emanates circular waves in all directions. If you could actually see the waves, they would form a perfect sphere around the tower. This type of antenna is called an isotropic antenna, and does not exist in the real world. It is theoretical and is used as a base point for measuring actual antennas.

Go in the right direction.

Now let’s turn to real-world antennas. There are many types of antennas that emit radio waves in different directions, shapes, and on different planes. Think of the spherical isotropic antenna. If squeezed from the sides, it will become shaped like a wheel and will concentrate waves on a vertical plane. If squeezed from the top, it will flatten out like a pancake and radiate waves on a horizontal plane. Thus, there are two basic types of antennas: directional and omnidirectional.

Directional antennas.

Directional antennas, primarily used in point-to-point networks, concentrate the waves in one direction much like a flashlight concentrates light in a narrow beam. Directional antennas include backfire, Yagi, dish, panel, and sector.

Backfire. This small directional antenna looks like a cake pan with a tin can in the middle. It’s designed to be compact, often under 11" in diameter, making it unobtrusive and practical for outdoor use. These antennas also offer excellent gain, and can be used in both point-to-point or point-to-multipoint systems.

Yagi. The Yagi-Uda (or Yagi) antenna is named for its Japanese inventors. The antenna was originally intended for radio use and is now frequently used in 802.11 wireless systems.

A Yagi antenna is highly directional. It looks like a long fishbone with a central spine and perpendicular rods or discs at specified intervals. Yagi antennas offer superior gain and highly vertical directionality. The longer the Yagi, the more focused its radiation is. Many outdoor Yagi antennas are covered in PVC so you can’t see the inner structure.

Yagi antennas are good for making point-to-point links in long narrow areas (for instance, connecting to a distant point in a valley) or for point-to-point links between buildings. They can also be used to extend the range of a point-to-multipoint network.

Parabolic or Dish. These antennas look like a circular or rectangular concave bowl or "dish". The backboard can be solid or a grid design. Parabolic grid designs are excellent for outdoor use since the wind blows right through them. The concave nature of this dish design focuses energy into a narrow beam that can travel long distances, even up to several miles. This makes parabolic antennas ideal for point-to-point network connections. Since they generate a narrow beam in both the horizontal and vertical planes, offer excellent gain, and minimize interference, they’re ideal for long-distance point-to-point networks.

Panel or Patch. These antennas are often square or rectangular, and they’re frequently hung on walls. They’re designed to radiate horizontally forward and to the side, but not behind them. Sometimes they’re called "picture-frame" antennas.

Panel antennas are ideal in applications where the access point is at one end of a building. They’re good for penetrating a single floor of a building, and for small and medium-size homes and offices. Since they might not have much vertical radiation, they might not be a good choice for multifloor applications.

Because panel antennas can be easily concealed, they’re a good choice when aesthetics are important.

Sector. A sector antenna can be any type of antenna that directs the radio waves in a specific area. They are often large, outdoor flat-panel or dish-type antennas mounted up high and tilted downward toward the ground. These antennas are often used in sprawling campus settings to cover large areas.

Omnidirectional antennas.

Omnidirectional antennas provide the widest coverage possible and are generally used in point-to-multipoint networks. Their range can be extended by overlapping circles of coverage from multiple access points. Most omnidirectional antennas emanate waves in a fan-shaped pattern on a horizontal plane. Overall, omnidirectional antennas have lower gain than directional antennas. Examples of omnidirectional antennas include: integrated, blade, and ceiling.

Integrated. Integrated antennas are antennas that are built into wireless networking devices. They may be embedded in PC card client adapters or in the covers or body of laptops or other devices, such as access points. Integrated antennas often do not offer the same reception as external antennas and might not pick up weak signals. Access points with integral antennas must often be moved or tilted to get the best reception.

Blade. These small, omnidirectional antennas are often housed in long, thin envelopes of plastic. They are most often used to pick up a signal in a low-signal or no-signal spot. You usually will see them on the walls of cubicles, mounted on desktops, or even hung above cubicles to catch signals. They’re basically an inexpensive signal booster.

Ceiling Dome. These are sometimes also called ceiling blister antennas. They look somewhat like a smoke detector and are designed for unobtrusive use in ceilings, particularly drop ceilings. Ceiling dome antennas often have a pigtail for easy connection to access points. They’re excellent for use in corporate environments where wide coverage over a cube farm is needed.

Wave basics.

To better understand wireless antennas and networking, there are some basic measurements and terms that need to be discussed.

Gain. One of the primary measurements of antennas is gain. Gain is measured as dBi, which is how much the antenna increases the transmitter’s power compared to the theoretical isotropic antenna, which has a gain of 0 dBi. dBi is the true gain the antenna provides to the transmitter’s output. Gain is also reciprocal-it’s the same transmitting and receiving. Higher gain means stronger sent and received signals. An easy way to remember gain basics is that every 3 dB of gain added doubles the effective power output of an antenna. The more an antenna concentrates a signal, the higher the gain it will have.

You can actually calculate the gains and losses of a system by adding up the gains and losses of its parts in decibels.

Frequency and Wavelength. Electromagnetic waves are comprised of two components: frequency and wavelength.

Frequency is how many waves occur each second. Wavelength is the distance between one peak of a wave and the next peak. Lower frequencies have longer wavelengths; higher frequencies have shorter wavelengths. For example, the frequency of AM radio is 1 MHz with a wavelength of about 1000 feet. FM radios operate at a much higher frequency of 100 MHz and have a wavelength of about 100 feet.

The two most common frequencies for wireless networking are 2.4-GHz and 5-GHz. Both are very high frequencies with very short wavelengths in the microwave band. The 2.4-GHz frequency has a wavelength of about 5 inches.

Beamwidth. Consider an antenna to be like a flashlight or spotlight. It reflects and directs the light (or radio waves) in a particular direction. Beamwidth actually measures how energy is focused or concentrated.

Polarization. This is the direction in which the antenna radiates wavelengths, either vertically, horizontally, or circularly. Vertical antennas have vertical polarization and are the most common. For optimum performance, it is important that the sending and receiving antennas have the same polarization.

VSWR and Return Loss. Voltage Standing Wave Ratio (VSWR) measures how well the antenna is matched to the network at the operating frequency being used. It indicates how much of the received signal won’t reach either the transceiver or receiver. Return loss measures how well matched an antenna is to the network. Typical VSWR numbers are 1:1.2 or 1:1.5. A typical return loss number is 20.


Black Box Explains…Fiber Ethernet adapters vs. media converters.

When running fiber to the desktop, you have two choices for making the connection from the fiber to a PC: a fiber Ethernet adapter or a media converter like our... more/see it nowMicro Mini Media Converter.

Fiber Ethernet adapters:

  • Less expensive.
  • Create no desktop clutter, but the PC must be opened.
  • Powered from the PC—require no separate power provision.
  • Require an open PCI or PCI-E slot in the PC.
  • Can create driver issues that must be resolved.
  • May be required in high-security installations that require a 100% fiber link to the desktop.

  • Media converters:
  • More expensive.
  • No need to open the PC but can create a cluttered look.
  • Powered from an AC outlet or a PC’s USB port.
  • Don’t require an open slot in the PC.
  • Plug-and-play installation—totally transparent to data, so there are no driver problems; install in seconds.
  • The short copper link from media converter to PC may be a security vulnerability.
  • collapse

    Black Box Explains...Why media converters need SNMP.

    The number of Ethernet switches and fiber optic segments being added to Ethernet networks keeps increasing. And as long as most Ethernet switches are only available with 10BASE-T and 100BASE-TX... more/see it nowinterfaces, media converters will remain in demand.

    Until now, a failure on the network could go unnoticed. Once a failure was detected, it could take a long time to isolate it, especially if a technician had to be sent to the site. But media converters with SNMP eliminate some of the guesswork.

    With SNMP, the IS manager can detect a failure, isolate it to a specific port, and determine what hardware is required to repair it. A technician can then be sent directly to the right place to fix faulty hardware or repair a broken cable.

    SNMP enables you to set up alarms or traps when a link is down. You can turn features on and off from a central terminal, so there’s no need to leave your desk. You can also monitor power supplies and replace them without interrupting service. SNMP management reduces the time and money it takes to get your network up and running again. The users on your network will notice—and appreciate—the improved service and reliability. collapse

    Black Box Explains...Power over Ethernet (PoE).

    What is PoE?
    The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

    Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

    How does PoE work?
    The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

    When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

    Basic structure.
    There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

    PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

    End-span device → Ethernet with power

    A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

    Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

    Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

    PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

    PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • Converters and Scalers Selector
    PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms

    Black Box Explains...Multimode vs. single-mode Fiber.

    Multimode, 50- and 62.5-micron cable.
    Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

    Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

    Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

    Single-mode, 8–10-micron cable.
    Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

    Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

    Specification comparison:

    50-/125-Micron Multimode Fiber

    850-nm Wavelength:
    Bandwidth: 500 MHz/km;
    Attenuation: 3.5 dB/km;
    Distance: 550 m;

    1300-nm Wavelength:
    Bandwidth: 500 MHz/km;
    Attenuation: 1.5 dB/km;
    Distance: 550 m

    62.5-/125-Miron Multimode Fiber

    850-nm Wavelength:
    Bandwidth: 160 MHz/km;
    Attenuation: 3.5 dB/km;
    Distance: 220 m;

    1300-nm Wavelength:
    Bandwidth: 500 MHz/km;
    Attenuation: 1.5 dB/km;
    Distance: 500 m

    8–10-Micron Single-Mode Fiber

    Premise Application:
    Wavelength: 1310 nm and 1550 nm;
    Attenuation: 1.0 dB/km;

    Outside Plant Application:
    Wavelength: 1310 nm and 1550 nm;
    Attenuation: 0.1 dB/km collapse

    Black Box Explains...RS-232.

    RS-232, also known as RS-232C and TIA/EIA-232-E, is a group of electrical, functional, and mechanical specifications for serial interfaces between computers, terminals, and peripherals. The RS-232 standard was developed by... more/see it nowthe Electrical Industries Association (EIA), and defines requirements for connecting data communications equipment (DCE)—modems, converters, etc.—and data terminal equipment (DTE)—computers, controllers, etc.) devices. RS-232 transmits data at speeds up to 115 Kbps and over distances up to 50 feet (15.2 m).

    The standard, which is functionally equivalent to ITU V.24/V.28, specifies the workings of the interface, circuitry, and connector pinning. Both sync and async binary data transmission fall under RS-232. Although RS-232 is sometimes still used to transmit data from PCs to peripheral devices, the most common uses today are for network console ports and for industrial devices.

    Even though RS-232 is a “standard,” you can’t necessarily expect seamless communication between two RS-232 devices. Why? Because different devices have different circuitry or pinning, and different wires may be designated to perform different functions.

    The typical RS-232 connector is DB25, but some PCs and other data communication devices have DB9 connectors and many newer devices have RJ-45 RS-232 ports. To connect 9-pin PC ports or RJ-45 to devices with 25-pin connectors, you will require a simple adapter cable. collapse

    Black Box Explains...10-Gigabit Ethernet.

    10-Gigabit Ethernet, sometimes called 10-GbE or 10 GigE, is the latest improvement on the Ethernet standard, ratified in 2003 for fiber as the 802.3ae standard, in 2004 for twinax cable... more/see it now as the 802.3ak standard, and in 2006 for UTP as the 802.3an standard.

    10-Gigabit Ethernet offers ten times the speed of Gigabit Ethernet. This extraordinary throughput plus compatibility with existing Ethernet standards has resulted in 10-Gigabit Ethernet quickly becoming the new standard for high-speed network backbones, largely supplanting older technologies such as ATM over SONET. 10-Gigabit Ethernet has even made inroads in the area of storage area networks (SAN) where Fibre Channel has long been the dominant standard. This new Ethernet standard offers a fast, simple, relatively inexpensive way to incorporate super high-speed links into your network.

    Because 10-Gigabit Ethernet is simply an extension of the existing Ethernet standards family, it’s a true Ethernet standard—it’s totally backwards compatible and retains full compatibility with 10-/100-/1000-Mbps Ethernet. It has no impact on existing Ethernet nodes, enabling you to seamlessly upgrade your network with straightforward upgrade paths and scalability.

    10-Gigabit Ethernet is less costly to install than older high-speed standards such as ATM. And not only is it relatively inexpensive to install, but the cost of network maintenance and management also stays low—10-Gigabit Ethernet can easily be managed by local network administrators.

    10-Gigabit Ethernet is also more efficient than other high-speed standards. Because it uses the same Ethernet frames as earlier Ethernet standards, it can be integrated into your network using switches rather than routers. Packets don’t need to be fragmented, reassembled, or translated for data to get through.

    Unlike earlier Ethernet standards, which operate in half- or full-duplex, 10-Gigabit Ethernet operates in full-duplex only, eliminating collisions and abandoning the CSMA/CD protocol used to negotiate half-duplex links. It maintains MAC frame compatibility with earlier Ethernet standards with 64- to 1518-byte frame lengths. The 10-Gigabit standard does not support jumbo frames, although there are proprietary methods for accommodating them.

    Fiber 10-Gigabit Ethernet standards
    There are two groups of physical-layer (PHY) 10-Gigabit Ethernet standards for fiber: LAN-PHY and WAN-PHY.

    LAN-PHY is the most common group of standards. It’s used for simple switch and router connections over privately owned fiber and uses a line rate of 10.3125 Gbps with 64B/66B encoding.

    The other group of 10-Gigabit Ethernet standards, WAN-PHY, is used with SONET/SDH interfaces for wide area networking across cities, states—even internationally.

    10GBASE-SR (Short-Range) is a serial short-range fiber standard that operates over two multimode fibers. It has a range of 26 to 82 meters (85 to 269 ft.) over legacy 62.5-µm 850-nm fiber and up to 300 meters (984 ft.) over 50-µm 850-nm fiber.

    10GBASE-LR (Long-Range) is a serial long-range 10-Gbps Ethernet standard that operates at ranges of up to 25 kilometers (15.5 mi.) on two 1310-nm single-mode fibers.

    10GBASE-ER (Extended-Range) is similar to 10GBASE-LR but supports distances up to 40 kilometers (24.9 mi.) over two 1550-nm single-mode fibers.

    10GBASE-LX4 uses Coarse-Wavelength Division Multiplexing (CWDM) to achieve ranges of 300 meters (984 ft.) over two legacy 850-nm multimode fibers or up to 10 kilometers (6.2 mi.) over two 1310-nm single-mode fibers. This standard multiplexes four data streams over four different wavelengths in the range of 1300 nm. Each wavelength carries 3.125 Gbps to achieve 10-Gigabit speed.

    In fiber-based Gigabit Ethernet, the 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER LAN-PHY standards have WAN-PHY equivalents called 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW. There is no WAN-PHY standard corresponding to 10GBASE-LX4.

    WAN-PHY standards are designed to operate across high-speed systems such as SONET and SDH. These systems are often telco operated and can be used to provide high-speed data delivery worldwide. WAN-PHY 10-Gigabit Ethernet operates within SDH and SONET using an SDH/SONET frame running at 9.953 Gbps without the need to directly map Ethernet frames into SDH/SONET.

    WAN-PHY is transparent to data—from the user’s perspective it looks exactly the same as LAN-PHY.

    10-Gigabit Ethernet over Copper
    10GBASE-CX4 is a standard that enables Ethernet to run over CX4 cable, which consists of four twinaxial copper pairs bundled into a single cable. CX4 cable is also used in high-speed InfiniBand® and Fibre Channel storage applications. Although CX4 cable is somewhat less expensive to install than fiber optic cable, it’s limited to distances of up to 15 meters. Because this standard uses such a specialized cable at short distances, 10GBASE-CX4 is generally used only in limited data center applications such as connecting servers or switches.

    10GBASE-Kx is backplane 10-Gigabit Ethernet and consists of two standards. 10GBASE-KR is a serial standard compatible with 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER. 10GBASE-KX4 is compatible with 10GBASE-LX4. These standards use up to 40 inches of copper printed circuit board with two connectors in place of cable. These very specialized standards are used primarily for switches, routers, and blade servers in data center applications.

    10GBASE-T is the 10-Gigabit standard that uses the familiar shielded or unshielded copper UTP cable. It operates at distances of up to 55 meters (180 ft.) over existing Category 6 cabling or up to 100 meters (328 ft.) over augmented Category 6, or “6a,” cable, which is specially designed to reduce crosstalk between UTP cables. Category 6a cable is somewhat bulkier than Category 6 cable but retains the familiar RJ-45 connectors.

    To send data at these extremely high speeds across four-pair UTP cable, 10GBASE-T uses sophisticated digital signal processing to suppress crosstalk between pairs and to remove signal reflections.

    10-Gigabit Ethernet Applications
    > 10-Gigabit Ethernet is already being deployed in applications requiring extremely high bandwidth:
    > As a lower-cost alternative to Fibre Channel in storage area networking (SAN) applications.
    > High-speed server interconnects in server clusters.
    > Aggregation of Gigabit segments into 10-Gigabit Ethernet trunk lines.
    > High-speed switch-to-switch links in data centers.
    > Extremely long-distance Ethernet links over public SONET infrastructure.

    Although 10-Gigabit Ethernet is currently being implemented only by extremely high-volume users such as enterprise networks, universities, telecommunications carriers, and Internet service providers, it’s probably only a matter of time before it’s delivering video to your desktop. Remember that only a few years ago, a mere 100-Mbps was impressive enough to be called “Fast Ethernet.” collapse

    Results 11-20 of 49 < 1 2 3 4 5 > 


    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


    You have added this item to your cart.

    Black Box 1-877-877-2269 Black Box Network Services