Loading


Categories (x) > Networking (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 45 1 2 3 4 5 > 

Black Box Explains...Gigabit Ethernet.

As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

Compatibility
Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

Affordability and adaptability
You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

1000BASE-X
1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

1000BASE-SX
The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

1000BASE-LX
The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

1000BASE-CX
The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

Gigabit over CAT5—1000BASE-TX
The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse


SHDSL, VDSL, VDSL2, ADSL, and SDSL.

xDSL, a term that encompasses the broad range of digital subscriber line (DSL) services, offers a low-cost, high-speed data transport option for both individuals and businesses, particularly in areas without... more/see it nowaccess to cable Internet.

xDSL provides data transmission over copper lines, using the local loop, the existing outside-plant telephone cable network that runs right to your home or office. DSL technology is relatively cheap and reliable.

SHDSL can be used effectively in enterprise LAN applications. When interconnecting sites on a corporate campus, buildings and network devices often lie beyond the reach of a standard Ethernet segment. Now you can use existing copper network infrastructure to connect remote LANS across longer distances and at higher speeds than previously thought possible.

There are various forms of DSL technologies, all of which face distance issues. The quality of the signals goes down with increasing distance. The most common will be examined here, including SHDSL, ADSL, and SDSL.

SHDSL (also known as G.SHDSL) (Single-Pair, High-Speed Digital Subscriber Line) transmits data at much higher speeds than older versions of DSL. It enables faster transmission and connections to the Internet over regular copper telephone lines than traditional voice modems can provide. Support of symmetrical data rates makes SHDSL a popular choice for businesses for PBXs, private networks, web hosting, and other services.

Ratified as a standard in 2001, SHDSL combines ADSL and SDSL features for communications over two or four (multiplexed) copper wires. SHDSL provides symmetrical upstream and downstream transmission with rates ranging from 192 kbps to 2.3 Mbps. As a departure from older DSL services designed to provide higher downstream speeds, SHDSL specified higher upstream rates, too. Higher transmission rates of 384 kbps to 4.6 Mbps can be achieved using two to four copper pairs. The distance varies according to the loop rate and noise conditions.

For higher-bandwidth symmetric links, newer G.SHDSL devices for 4-wire applications support 10-Mbps rates at distances up to 1.3 miles (2 km). Equipment for 2-wire deployments can transmit up to 5.7 Mbps at the same distance.

SHDSL (G.SHDSL) is the first DSL standard to be developed from the ground up and to be approved by the International Telecommunication Union (ITU) as a standard for symmetrical digital subscriber lines. It incorporates features of other DSL technologies, such as ADSL and SDS, and is specified in the ITU recommendation G.991.2.

Also approved in 2001, VDSL (Very High Bitrate DSL) as a DSL service allows for downstream/upstream rates up to 52 Mbps/16 Mbps. Extenders for local networks boast 100-Mbps/60-Mbps speeds when communicating at distances up to 500 feet (152.4 m) over a single voice-grade twisted pair. As a broadband solution, VDSL enables the simultaneous transmission of voice, data, and video, including HDTV, video on demand, and high-quality videoconferencing. Depending on the application, you can set VDSL to run symmetrically or asymmetrically.

VDSL2 (Very High Bitrate DSL 2), standardized in 2006, provides a higher bandwidth (up to 30 MHz) and higher symmetrical speeds than VDSL, enabling its use for Triple Play services (data, video, voice) at longer distances. While VDSL2 supports upstream/downstream rates similar to VDSL, at longer distances, the speeds don’t fall off as much as those transmitted with ordinary VDSL equipment.

ADSL (Asymmetric DSL) provides transmission speeds ranging from downstream/upstream rates of 9 Mbps/640 kbps over a relatively short distance to 1.544 Mbps/16 kbps as far away as 18,000 feet. The former speeds are more suited to a business, the latter more to the computing needs of a residential customer.

More bandwidth is usually required for downstream transmissions, such as receiving data from a host computer or downloading multimedia files. ADSL’s asymmetrical nature provides more than sufficient bandwidth for these applications.

The lopsided nature of ADSL is what makes it most likely to be used for high-speed Internet access. And the various speed/distance options available within this range are one more point in ADSL’s favor. Like most DSL services standardized by ANSI as T1.413, ADSL enables you to lease and pay for only the bandwidth you need.

SDSL (Symmetric DSL) represents the two-wire version of HDSL—which is actually symmetric DSL, albeit a four-wire version. SDSL is also known within ANSI as HDSL2.

Essentially offering the same capabilities as HDSL, SDSL offers T1 rates (1.544 Mbps) at ranges up to 10,000 feet and is primarily designed for business applications.

collapse


Black Box Explains…A terminal server by any other name.

A terminal server (sometimes called a serial server or a console server or a device server) is a hardware device that enables you to connect serial devices across a network.

Terminal... more/see it nowservers acquired their name because they were originally used for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. But if you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


Black Box Explains... GBICs

A Gigabit Interface Converter (GBIC) is a transceiver that converts digital electrical currents to optical signals and back again. GBICs support speeds of 1 Gbps or more and are typically... more/see it nowused as an interface between a high-speed Ethernet or ATM switch and a fiber backbone. GBICs are hot-swappable, so switches don’t need to be powered down for their installation. collapse


Black Box Explains...Layer 3 switching.

In the last decade, network topologies have typically featured routers along with hubs or switches. The hub or switch acts as a central wiring point for LAN segments while the... more/see it nowrouter takes care of higher-level functions such as protocol translation, traffic between LAN segments, and wide-area access.

Layer 3 switching, which combines Layer 2 switching and Layer 3 IP routing, provides a more cost-effective way of setting up LANs by incorporating switching and routing into one device. While a traditional Layer 2 switch simply sends data along without examining it, a Layer 3 switch incorporates some features of a router in that it examines data packets before sending them on their way. The integration of switching and routing in a Layer 3 switch takes advantage of the speed of a switch and the intelligence of a router in one economical package.

There are two basic types of Layer 3 switching: packet-by-packet Layer 3 (PPL3) and cut-through Layer 3.

PPL3 switches are technically routers in that they examine all packets before forwarding them to their destinations. They achieve top speed by running protocols such as OSPF (Open Shortest Path First) and by using cache routing tables. Because these switches understand and take advantage of network topology, they can blow the doors off traditional routers with speeds of more than 7,000,000 (that’s seven million!) packets per second.

Cut-through Layer 3 switching relies on a shortcut for top speed. Cut-through Layer 3 switches, rather than examining every packet, examine only the first in a series to determine its destination. Once the destination is known, the data flow is switched at Layer 2 to achieve high speeds. collapse


Black Box Explains...How to maximize your wireless range.

There are four simple rules that enable you to transmit wireless communications up to their maximum range:
• Try to keep a direct line between the transmitter and receiver.
• Minimize... more/see it nowthe number of walls and ceilings between the transmitter and receiver. Such obstructions reduce the range.
• If there are obstructions, be sure the wireless signal passes through drywall or open doorways and not other materials.
• Keep the transmitter and receiver at least 3 to 6 feet (0.9 to 1.8 m) away from electrical devices or appliances, especially those that generate extreme RF noise. collapse


Black Box Explains...Ethernet.



If you have an existing network, there’s a 90% chance it’s Ethernet. If you’re installing a new network, there’s a 98% chance it’s Ethernet—the Ethernet standard is... more/see it nowthe overwhelming favorite network standard today.


Ethernet was developed by Xerox®, DEC®, and Intel® in the mid-1970s as a 10-Mbps (Megabits per second) networking protocol—very fast for its day—operating over a heavy coax cable (Standard Ethernet).


Today, although many networks have migrated to Fast Ethernet (100 Mbps) or even Gigabit Ethernet (1000 Mbps), 10-Mbps Ethernet is still in widespread use and forms the basis of most networks.


Ethernet is defined by international standards, specifically IEEE 802.3. It enables the connection of up to 1024 nodes over coax, twisted-pair, or fiber optic cable. Most new installations today use economical, lightweight cables such as Category 5 unshielded twisted-pair cable and fiber optic cable.


How Ethernet Works

Ethernet signals are transmitted from a station serially, one bit at a time, to every other station on the network.


Ethernet uses a broadcast access method called Carrier Sense Multiple Access/Collision Detection (CSMA/CD) in which every computer on the network “hears” every transmission, but each computer “listens” only to transmissions intended for it.


Each computer can send a message anytime it likes without having to wait for network permission. The signal it sends travels to every computer on the network. Every computer hears the message, but only the computer for which the message is intended recognizes it. This computer recognizes the message because the message contains its address. The message also contains the address of the sending computer so the message can be acknowledged.


If two computers send messages at the same moment, a “collision” occurs, interfering with the signals. A computer can tell if a collision has occurred when it doesn’t hear its own message within a given amount of time. When a collision occurs, each of the colliding computers waits a random amount of time before resending the message.


The process of collision detection and retransmission is handled by the Ethernet adapter itself and doesn’t involve the computer. The process of collision resolution takes only a fraction of a second under most circumstances. Collisions are normal and expected events on an Ethernet network. As more computers are added to the network and the traffic level increases, more collisions occur as part of normal operation. However, if the network gets too crowded, collisions increase to the point where they slow down the network considerably.


Standard (Thick) Ethernet (10BASE5)


  • Uses “thick” coax cable with N-type connectors for a backbone and a transceiver cable with 9-pin connectors from the transceiver to the NIC.
  • Both ends of each segment should be terminated with a 50-ohm resistor.
  • Maximum segment length is 500 meters.
  • Maximum total length is 2500 meters.
  • Maximum length of transceiver cable is 50 meters.
  • Minimum distance between transceivers is 2.5 meters.
  • No more than 100 transceiver connections per segment are allowed.
Thin Ethernet (ThinNet) (10BASE2)


  • Uses "Thin" coax cable.
  • The maximum length of one segment is 185 meters.
  • The maximum number of segments is five.
  • The maximum total length of all segments is 925 meters.
  • The minimum distance between T-connectors is 0.5 meters.
  • No more than 30 connections per segment are allowed.
  • T-connectors must be plugged directly into each device.
Twisted-Pair Ethernet (10BASE-T)


  • Uses 22 to 26 AWG unshielded twisted-pair cable (for best results, use Category 4 or 5 unshielded twisted pair).
  • The maximum length of one segment is 100 meters.
  • Devices are connected to a 10BASE-T hub in a star configuration.
  • Devices with standard AUI connectors may be attached via a 10BASE-T transceiver.
Fiber Optic Ethernet (10BASE-FL, FOIRL)


  • Uses 50-, 62.5-, or 100-micron duplex multimode fiber optic cable (62.5 micron is recommended).
  • The maximum length of one 10BASE-FL (the new standard for fiber optic connections) segment is 2 kilometers.
  • The maximum length of one FOIRL (the standard that preceded the new 10BASE-FL) segment is 1 kilometer.
collapse


Non-standard PoE

Because Power over Ethernet (PoE) delivers power over the same cable as data, it’s popular for powering devices such as VoIP phones, wireless access points, and security cameras. It often... more/see it nowleads to significant savings by eliminating the need to install a separate power outlet.

Most PoE today is standards-based IEEE 802.3af or the newer higher-powered IEEE 802.3at PoE, which are very safe because power source equipment (PSE) doesn’t add power to the data line unless it detects a compatible powered device (PD) connected to the other end of the cable. This protects devices that do not support PoE. PSEs and PDs also negotiate power requirements, so a PD never receives too much power. Both PSEs and PDs have power supplies and regulators isolated from ground to minimize shock hazard.

But here’s where it gets complicated…
Because most PoE available today is standards-based 802.3af or 802.3at, it’s easy to forget that there are versions of PoE that are NOT standards based. Some of these non-standards-based versions of PoE feature power injectors that inject power without checking compatibility—and that can be very bad news for an innocent network device.

Non-standard PoE tends to fall into three categories: proprietary PoE, high-wattage proprietary PoE, and passive PoE.

Proprietary PoE.
Before the ratification of the 802.3af standard in 2003, PoE was a free-for-all with many vendors offering their own method of delivering power over data lines. Some vendors still offer their own proprietary PoE. These proprietary solutions offer varying degrees of communication between PSE and PD. Our Black Box® Wireless Point-to-Point Ethernet Extender Kit (LWE100A-KIT) uses Prorietary PoE in the form of 12 VDC running at 12 W, which is well below the 48 VDC and 15.4 W provided by standard 802.3af.

High-wattage Proprietary PoE.
Many vendors offer high-wattage PoE solutions designed to deliver from 50 watts to 100 or even 200 watts per port. High-wattage proprietary PoE is often used with high-powered outdoor wireless radios.

Passive PoE.
Passive PoE injects power into an Ethernet cable on Pins 4 and 5 with negative return on Pins 7 and 8 and absolutely no communication between PSE and PD. This method was once a very common “home brew” method of transferring power over data cable and is still commonly used in telecomm applications.

Document and label.
There’s nothing wrong with PoE that’s not standards based—these power methods work as well as 802.3af/at PoE to power network devices. You do, however, need to be aware of what kind of Power over Ethernet you have and what it will work with. Good network documentation and labeling are the keys that enable you to know that, for instance, that power injector is a high-wattage proprietary injector that will fry the IP camera you’re about to connect. Proper documentation, which is good practice in any case, becomes absolutely vital when you have components that may damage other components.
collapse


Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet, sometimes called 10-GbE or 10 GigE, is the latest improvement on the Ethernet standard, ratified in 2003 for fiber as the 802.3ae standard, in 2004 for twinax cable... more/see it now as the 802.3ak standard, and in 2006 for UTP as the 802.3an standard.

10-Gigabit Ethernet offers ten times the speed of Gigabit Ethernet. This extraordinary throughput plus compatibility with existing Ethernet standards has resulted in 10-Gigabit Ethernet quickly becoming the new standard for high-speed network backbones, largely supplanting older technologies such as ATM over SONET. 10-Gigabit Ethernet has even made inroads in the area of storage area networks (SAN) where Fibre Channel has long been the dominant standard. This new Ethernet standard offers a fast, simple, relatively inexpensive way to incorporate super high-speed links into your network.

Because 10-Gigabit Ethernet is simply an extension of the existing Ethernet standards family, it’s a true Ethernet standard—it’s totally backwards compatible and retains full compatibility with 10-/100-/1000-Mbps Ethernet. It has no impact on existing Ethernet nodes, enabling you to seamlessly upgrade your network with straightforward upgrade paths and scalability.

10-Gigabit Ethernet is less costly to install than older high-speed standards such as ATM. And not only is it relatively inexpensive to install, but the cost of network maintenance and management also stays low—10-Gigabit Ethernet can easily be managed by local network administrators.

10-Gigabit Ethernet is also more efficient than other high-speed standards. Because it uses the same Ethernet frames as earlier Ethernet standards, it can be integrated into your network using switches rather than routers. Packets don’t need to be fragmented, reassembled, or translated for data to get through.

Unlike earlier Ethernet standards, which operate in half- or full-duplex, 10-Gigabit Ethernet operates in full-duplex only, eliminating collisions and abandoning the CSMA/CD protocol used to negotiate half-duplex links. It maintains MAC frame compatibility with earlier Ethernet standards with 64- to 1518-byte frame lengths. The 10-Gigabit standard does not support jumbo frames, although there are proprietary methods for accommodating them.

Fiber 10-Gigabit Ethernet standards
There are two groups of physical-layer (PHY) 10-Gigabit Ethernet standards for fiber: LAN-PHY and WAN-PHY.

LAN-PHY is the most common group of standards. It’s used for simple switch and router connections over privately owned fiber and uses a line rate of 10.3125 Gbps with 64B/66B encoding.

The other group of 10-Gigabit Ethernet standards, WAN-PHY, is used with SONET/SDH interfaces for wide area networking across cities, states—even internationally.

LAN-PHY
10GBASE-SR (Short-Range) is a serial short-range fiber standard that operates over two multimode fibers. It has a range of 26 to 82 meters (85 to 269 ft.) over legacy 62.5-µm 850-nm fiber and up to 300 meters (984 ft.) over 50-µm 850-nm fiber.

10GBASE-LR (Long-Range) is a serial long-range 10-Gbps Ethernet standard that operates at ranges of up to 25 kilometers (15.5 mi.) on two 1310-nm single-mode fibers.

10GBASE-ER (Extended-Range) is similar to 10GBASE-LR but supports distances up to 40 kilometers (24.9 mi.) over two 1550-nm single-mode fibers.

10GBASE-LX4 uses Coarse-Wavelength Division Multiplexing (CWDM) to achieve ranges of 300 meters (984 ft.) over two legacy 850-nm multimode fibers or up to 10 kilometers (6.2 mi.) over two 1310-nm single-mode fibers. This standard multiplexes four data streams over four different wavelengths in the range of 1300 nm. Each wavelength carries 3.125 Gbps to achieve 10-Gigabit speed.

WAN-PHY
In fiber-based Gigabit Ethernet, the 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER LAN-PHY standards have WAN-PHY equivalents called 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW. There is no WAN-PHY standard corresponding to 10GBASE-LX4.

WAN-PHY standards are designed to operate across high-speed systems such as SONET and SDH. These systems are often telco operated and can be used to provide high-speed data delivery worldwide. WAN-PHY 10-Gigabit Ethernet operates within SDH and SONET using an SDH/SONET frame running at 9.953 Gbps without the need to directly map Ethernet frames into SDH/SONET.

WAN-PHY is transparent to data—from the user’s perspective it looks exactly the same as LAN-PHY.

10-Gigabit Ethernet over Copper
10GBASE-CX4
10GBASE-CX4 is a standard that enables Ethernet to run over CX4 cable, which consists of four twinaxial copper pairs bundled into a single cable. CX4 cable is also used in high-speed InfiniBand® and Fibre Channel storage applications. Although CX4 cable is somewhat less expensive to install than fiber optic cable, it’s limited to distances of up to 15 meters. Because this standard uses such a specialized cable at short distances, 10GBASE-CX4 is generally used only in limited data center applications such as connecting servers or switches.

10GBASE-Kx
10GBASE-Kx is backplane 10-Gigabit Ethernet and consists of two standards. 10GBASE-KR is a serial standard compatible with 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER. 10GBASE-KX4 is compatible with 10GBASE-LX4. These standards use up to 40 inches of copper printed circuit board with two connectors in place of cable. These very specialized standards are used primarily for switches, routers, and blade servers in data center applications.

10GBASE-T
10GBASE-T is the 10-Gigabit standard that uses the familiar shielded or unshielded copper UTP cable. It operates at distances of up to 55 meters (180 ft.) over existing Category 6 cabling or up to 100 meters (328 ft.) over augmented Category 6, or “6a,” cable, which is specially designed to reduce crosstalk between UTP cables. Category 6a cable is somewhat bulkier than Category 6 cable but retains the familiar RJ-45 connectors.

To send data at these extremely high speeds across four-pair UTP cable, 10GBASE-T uses sophisticated digital signal processing to suppress crosstalk between pairs and to remove signal reflections.

10-Gigabit Ethernet Applications
> 10-Gigabit Ethernet is already being deployed in applications requiring extremely high bandwidth:
> As a lower-cost alternative to Fibre Channel in storage area networking (SAN) applications.
> High-speed server interconnects in server clusters.
> Aggregation of Gigabit segments into 10-Gigabit Ethernet trunk lines.
> High-speed switch-to-switch links in data centers.
> Extremely long-distance Ethernet links over public SONET infrastructure.

Although 10-Gigabit Ethernet is currently being implemented only by extremely high-volume users such as enterprise networks, universities, telecommunications carriers, and Internet service providers, it’s probably only a matter of time before it’s delivering video to your desktop. Remember that only a few years ago, a mere 100-Mbps was impressive enough to be called “Fast Ethernet.” collapse


Black Box Explains...LAN switches.



Rush hour-all day, every day.

Applications such as document imaging, video/multimedia production, and intranetworking are very demanding. They generate huge data files that often must be transferred... more/see it nowbetween stations based on strict timing requirements. If such traffic is not transmitted efficiently, you end up with jerky video, on-screen graphics that take forever to load, or other irritating, debilitating problems.


These problems arise because in traditional LANs, only one network node transmits data at a time while all other stations listen. This works in conventional, server-based LANs where multiple workstations share files or applications housed on a central server. But if a network has several servers, or if it supports high-bandwidth, peer-to-peer applications such as videoconferencing, the one-station-at-a-time model just doesn’t work.


Ideally, each LAN workstation should be configured with its own dedicated LAN cable segment. But that’s neither practical nor affordable. A far more reasonable solution is a network designed to provide clear paths from each workstation to its destination on demand, whether that destination is another workstation or server.


These vehicles clear the lanes.

Unlike bridges and routers, which process data packets on an individual, first-come, first-served basis, switches maintain multiple, simultaneous data conversions among attached LAN segments.


From the perspective of an end-user workstation, a switched circuit appears to be a dedicated connection-a direct, full-speed LAN link to an attached server or other remote LAN node. Although this technique is somewhat different from what a LAN bridge or router does, switching hubs are based on similar technologies.




Which route will you choose?

Switching hubs that use bridging technologies are called Layer 2 switches-a reference to Layer 2 or the Data-Link Layer of the OSI Model. These switches operate using the MAC addresses in Layer 2 and are transparent to network protocols. Switches that use routing technologies are known as Layer 3 switches, referring to Layer 3—the Network Layer—of the OSI Model. These switches, like routers, represent the next higher level of intelligence in the hardware hierarchy. Rather than passing packets based on MAC addresses, these switches look into the data structure and route it based on the network addresses found in Layer 3. They are also dependent on the network protocol.


Layer 2 switches connect different parts of the same network as determined by the network number contained with the data packet. Layer 3 switches connect LANs or LAN segments with different network numbers.


If you’re subdividing an existing LAN, obviously you’re dealing with only one network and one network number, so you can install a Layer 2 switch wherever it will segment network traffic the best, and you don’t have to reconfigure the LAN. However, if you use a Layer 3 switch, you’ll have to reconfigure the segments to ensure that each has a different network number.


Similarly, if you’re connecting existing networks, you have to examine the currently configured network numbers before adding a switch. If the network numbers are the same, you need to use a Layer 2 switch. If they’re different, you must use a Layer 3 switch.


When dealing with multiple existing networks, you’ll find they usually use different network numbers. In this case, it’s preferable to use a Layer 3 switch (or possibly even a full-featured router) to avoid reconfiguring the network.


But what if you’re designing a network from scratch and can choose either type of switch? Your decision should be based on the expected complexity of your LAN. Layer 3 routing technology is well suited for complex networks. Layer 2 switches are recommended for smaller, less complex networks.

collapse

Results 1-10 of 45 1 2 3 4 5 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services