Loading


Categories (x) > Networking > Wireless > Antennas (x)
Content Type (x) > Black Box Explains (x)

Results 1-5 of 5 1 

Black Box Explains...How to maximize your wireless range.

There are four simple rules that enable you to transmit wireless communications up to their maximum range:
• Try to keep a direct line between the transmitter and receiver.
• Minimize... more/see it nowthe number of walls and ceilings between the transmitter and receiver. Such obstructions reduce the range.
• If there are obstructions, be sure the wireless signal passes through drywall or open doorways and not other materials.
• Keep the transmitter and receiver at least 3 to 6 feet (0.9 to 1.8 m) away from electrical devices or appliances, especially those that generate extreme RF noise. collapse


Black Box Explains...Designing your wireless network.



Setting up wireless devices that belong to the 802.11 family is relatively simple, but you do have to pay attention to a few simple factors.


Ad-hoc or infrastructure... more/see it nowmode?

The 802.11 wireless standards support two basic configurations: ad-hoc mode and infrastructure mode.


In ad-hoc mode, wireless user devices such as laptop computers and PDAs communicate directly with each other in a peer-to-peer manner without the benefit of access points.


Ad-hoc mode is generally used to form very small spontaneous networks. For instance, with ad-hoc mode, laptop users in a meeting can quickly establish a small network to share files.


Infrastructure mode uses wireless access points to enable wireless devices to communicate with each other and with your wired network. Most networks use infrastructure mode.


The basic components of infrastructure mode networks include:

  • The radios embedded or installed within the wireless devices themselves. Many notebook computers and other Wi-Fi-compliant mobile devices, such as PDAs, come with the transmitters built in. But for others, you need to install a card-type device to enable wireless communications. Desktop PCs may also need an ISA or a PCI bus adapter to enable the cards to work.
  • The access point, which acts as a base station that relays signals between the 802.11 devices.
One or many access points?

Access points are standalone hardware devices that provide a central point of communication for your wireless users. How many you need in your application depends on the number of users and the amount of bandwidth required by each user. Bandwidth is shared, so if your network has many users who routinely send data-heavy multimedia files, additional access points may be required to accommodate the demand.


A small-office network with fewer than 15 users may need just 1 access point. Larger networks require multiple points. If the hardware supports it, you can overlap coverage areas to allow users to roam between cells without any break in network coverage. A user’s wireless device picks up a signal beacon from the strongest access point to maintain seamless coverage.


How many access points to use also depends on your operating environment and the required range. Radio propagation can be affected by walls and electrical interference that can cause signal reflection and fading. If you’re linking mobile users indoors-where walls and other obstructions impede the radiated signal-the typical maximum range is 150 feet. Outdoors, you can get greater WLAN range-up to 2000 feet (depending on your antenna type) where there’s a clear line of sight!


For optimal speed and range, install your wireless access point several feet above the floor or ground and away from metal equipment or large appliances that may emit interference.


Battle of the bands.

In addition to sharing bandwidth, users also share a band. Most IEEE 802.11 or 802.11b devices function in the 2.4-2.4835-GHz band. But these frequencies are often congested, so you may want to use devices that take advantage of the IEEE 802.11a 5.725-5.825-GHz band.


No matter what frequency you use, you’ll want to isolate your users from outsiders using the same frequency. To do this, assign your users a network identifier, such as an Extended Service Set Identifier (ESSID), as well as distinct channels.


Web and wired network links.

The access point links your wireless network to your wired network, enabling your wireless users to access shared data resources and devices across your LAN enterprise. Some access points even feature capabilities for routing traffic in one or both directions between a wired and wireless network.


For Internet access, connect a broadband router with an access point to an Internet connection over a broadband service such as DSL, cable modem, or satellite.


For connecting network printers, you can dedicate a computer to act as a print server or add a wireless print server device; this enables those on your wireless network to share printers.


When to use external antennas.

If you plan to install access points, you can boost your signal considerably by adding external antennas. Various mounting configurations and high- and low-gain options are available.


You can also use add-on antennas to connect nodes where the topology doesn’t allow for a clear signal between access points. Or use them to link multiple LANs located far apart.


Additional external antennas are also useful to help overcome the effects of multipath propagation in which a signal takes different paths and confuses the receiver. It’s also helpful to deploy antennas that propagate the signal in a way that fits the environment. For instance, for a long, narrow corridor, use an antenna that focuses the RF pattern in one direction instead of one that radiates the signal in all directions.


Plan ahead with a site survey.

A site survey done ahead of time to plot where the signal is the strongest can help you identify problem areas and avoid dead spots where coverage isn’t up to par or is unreliable. For this, building blueprints are helpful in revealing potential obstructions that you might not see in your physical site walkthrough.


To field test for a clear signal path, attach an antenna to an access point or laptop acting as the transmitter at one end. Attach another antenna to a wireless device acting as a receiver at the other end. Then check for interference using RF test equipment (such as a wireless spectrum analyzer) and determine whether vertical or horizontal polarization will work best.


Need help doing this? Call us. We even offer a Site Survey Kit that has a variety of antennas included. Great for installers, the kit enables you to test a variety of antennas in the field before placing a larger antenna order.

collapse


Black Box Explains...MIMO wireless.

Multiple-Input/Multiple-Output (MIMO) is a part of the new IEEE 802.11n wireless standard. It’s a technique that uses multiple signals to increase the speed, reliability, and coverage of wireless networks. It... more/see it nowtransmits multiple datastreams simultaneously, increasing wireless capacity to up to 100 or even 250 Mbps.

This wireless transmission method takes advantage of a radio transmission characteristic called multipath, which means that radio waves bouncing off surfaces such as walls and ceilings will arrive at the antenna at fractionally different times. This characteristic has long been considered to be a nuisance that impairs wireless transmission, but MIMO technology actually exploits it to enhance wireless performance.

MIMO sends a high-speed data stream across multiple antennas by breaking it into several lower-speed streams and sending them simultaneously. Each signal travels multiple routes for redundancy.

To pick up these multipath signals, MIMO uses multiple antennas and compares signals many times a second to select the best one. A MIMO receiver makes sense of these signals by using a mathematical algorithm to reconstruct the signals. Because it has multiple signals to choose from, MIMO achieves higher speeds at greater ranges than conventional wireless hardware does. collapse


Black Box Explains...Choosing a wireless antenna.


Ride the wave.

One of the most critical components to operating a successful wireless network is having the right antennas. Antennas come in many different shapes and sizes,... more/see it noweach designed for a specific function. Selecting the right antennas for your network is crucial to achieving optimum network performance. In addition, using the right antennas can decrease your networking costs since you’ll need fewer antennas and access points.


Basically, a wireless network consists of data, voice, and video information packets being transmitted over low-frequency radio waves instead of electrically over copper cable or via light over fiber lines. The antenna acts as a radiator and transmits waves through the air, just like radio and TV stations. Antennas also receive the waves from the air and transport them to the receiver, which is a radio, TV, or in the case of wireless networking, a router or an access point.


Type cast.

The type of antennas you use depends on what type of network you’re setting up and the coverage you need. How large is your network? Is it for a home, single office, campus, or larger? Is it point-to-point or multipoint?


The physical design-walls, floors, etc.- of the building(s) you’re working in also affects the type and number of antennas you need. In addition, physical terrain affects your antenna choices. Obviously, a clear line of sight works best, but you need to consider obstructions such as trees, buildings, hills, and water. (Radio waves travel faster over land than water.) You even need to consider traffic noise in urban settings.


The ideal shape.

Let’s take a look at the different types of antennas.


Isotropic Antenna. First, think of the introduction to the old RKO movies. A huge tower sits on top of the world and emanates circular waves in all directions. If you could actually see the waves, they would form a perfect sphere around the tower. This type of antenna is called an isotropic antenna, and does not exist in the real world. It is theoretical and is used as a base point for measuring actual antennas.


Go in the right direction.

Now let’s turn to real-world antennas. There are many types of antennas that emit radio waves in different directions, shapes, and on different planes. Think of the spherical isotropic antenna. If squeezed from the sides, it will become shaped like a wheel and will concentrate waves on a vertical plane. If squeezed from the top, it will flatten out like a pancake and radiate waves on a horizontal plane. Thus, there are two basic types of antennas: directional and omnidirectional.


Directional antennas.

Directional antennas, primarily used in point-to-point networks, concentrate the waves in one direction much like a flashlight concentrates light in a narrow beam. Directional antennas include backfire, Yagi, dish, panel, and sector.


Backfire. This small directional antenna looks like a cake pan with a tin can in the middle. It’s designed to be compact, often under 11" in diameter, making it unobtrusive and practical for outdoor use. These antennas also offer excellent gain, and can be used in both point-to-point or point-to-multipoint systems.


Yagi. The Yagi-Uda (or Yagi) antenna is named for its Japanese inventors. The antenna was originally intended for radio use and is now frequently used in 802.11 wireless systems.


A Yagi antenna is highly directional. It looks like a long fishbone with a central spine and perpendicular rods or discs at specified intervals. Yagi antennas offer superior gain and highly vertical directionality. The longer the Yagi, the more focused its radiation is. Many outdoor Yagi antennas are covered in PVC so you can’t see the inner structure.


Yagi antennas are good for making point-to-point links in long narrow areas (for instance, connecting to a distant point in a valley) or for point-to-point links between buildings. They can also be used to extend the range of a point-to-multipoint network.


Parabolic or Dish. These antennas look like a circular or rectangular concave bowl or "dish". The backboard can be solid or a grid design. Parabolic grid designs are excellent for outdoor use since the wind blows right through them. The concave nature of this dish design focuses energy into a narrow beam that can travel long distances, even up to several miles. This makes parabolic antennas ideal for point-to-point network connections. Since they generate a narrow beam in both the horizontal and vertical planes, offer excellent gain, and minimize interference, they’re ideal for long-distance point-to-point networks.


Panel or Patch. These antennas are often square or rectangular, and they’re frequently hung on walls. They’re designed to radiate horizontally forward and to the side, but not behind them. Sometimes they’re called "picture-frame" antennas.


Panel antennas are ideal in applications where the access point is at one end of a building. They’re good for penetrating a single floor of a building, and for small and medium-size homes and offices. Since they might not have much vertical radiation, they might not be a good choice for multifloor applications.


Because panel antennas can be easily concealed, they’re a good choice when aesthetics are important.


Sector. A sector antenna can be any type of antenna that directs the radio waves in a specific area. They are often large, outdoor flat-panel or dish-type antennas mounted up high and tilted downward toward the ground. These antennas are often used in sprawling campus settings to cover large areas.


Omnidirectional antennas.

Omnidirectional antennas provide the widest coverage possible and are generally used in point-to-multipoint networks. Their range can be extended by overlapping circles of coverage from multiple access points. Most omnidirectional antennas emanate waves in a fan-shaped pattern on a horizontal plane. Overall, omnidirectional antennas have lower gain than directional antennas. Examples of omnidirectional antennas include: integrated, blade, and ceiling.


Integrated. Integrated antennas are antennas that are built into wireless networking devices. They may be embedded in PC card client adapters or in the covers or body of laptops or other devices, such as access points. Integrated antennas often do not offer the same reception as external antennas and might not pick up weak signals. Access points with integral antennas must often be moved or tilted to get the best reception.


Blade. These small, omnidirectional antennas are often housed in long, thin envelopes of plastic. They are most often used to pick up a signal in a low-signal or no-signal spot. You usually will see them on the walls of cubicles, mounted on desktops, or even hung above cubicles to catch signals. They’re basically an inexpensive signal booster.


Ceiling Dome. These are sometimes also called ceiling blister antennas. They look somewhat like a smoke detector and are designed for unobtrusive use in ceilings, particularly drop ceilings. Ceiling dome antennas often have a pigtail for easy connection to access points. They’re excellent for use in corporate environments where wide coverage over a cube farm is needed.


Wave basics.

To better understand wireless antennas and networking, there are some basic measurements and terms that need to be discussed.


Gain. One of the primary measurements of antennas is gain. Gain is measured as dBi, which is how much the antenna increases the transmitter’s power compared to the theoretical isotropic antenna, which has a gain of 0 dBi. dBi is the true gain the antenna provides to the transmitter’s output. Gain is also reciprocal-it’s the same transmitting and receiving. Higher gain means stronger sent and received signals. An easy way to remember gain basics is that every 3 dB of gain added doubles the effective power output of an antenna. The more an antenna concentrates a signal, the higher the gain it will have.


You can actually calculate the gains and losses of a system by adding up the gains and losses of its parts in decibels.


Frequency and Wavelength. Electromagnetic waves are comprised of two components: frequency and wavelength.


Frequency is how many waves occur each second. Wavelength is the distance between one peak of a wave and the next peak. Lower frequencies have longer wavelengths; higher frequencies have shorter wavelengths. For example, the frequency of AM radio is 1 MHz with a wavelength of about 1000 feet. FM radios operate at a much higher frequency of 100 MHz and have a wavelength of about 100 feet.


The two most common frequencies for wireless networking are 2.4-GHz and 5-GHz. Both are very high frequencies with very short wavelengths in the microwave band. The 2.4-GHz frequency has a wavelength of about 5 inches.


Beamwidth. Consider an antenna to be like a flashlight or spotlight. It reflects and directs the light (or radio waves) in a particular direction. Beamwidth actually measures how energy is focused or concentrated.


Polarization. This is the direction in which the antenna radiates wavelengths, either vertically, horizontally, or circularly. Vertical antennas have vertical polarization and are the most common. For optimum performance, it is important that the sending and receiving antennas have the same polarization.


VSWR and Return Loss. Voltage Standing Wave Ratio (VSWR) measures how well the antenna is matched to the network at the operating frequency being used. It indicates how much of the received signal won’t reach either the transceiver or receiver. Return loss measures how well matched an antenna is to the network. Typical VSWR numbers are 1:1.2 or 1:1.5. A typical return loss number is 20.

collapse


Black Box Explains...Wireless Ethernet standards.

IEEE 802.11
The precursor to 802.11b, IEEE 802.11 was introduced in 1997. It was a beginning, but 802.11 only supported speeds up to 2 Mbps. And it supported two entirely different... more/see it nowmethods of encoding—Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). This led to confusion and incompatibility between different vendors’ equipment.

IEEE 802.11b
802.11b is comfortably established as the most popular wireless standard. With the IEEE 802.11b Ethernet standard, wireless is fast, easy, and affordable. Wireless devices from all vendors work together seamlessly. 802.11b is a perfect example of a technology that has become both sophisticated and standardized enough to really make life simpler for its users.

The 802.11b extension of the original 802.11 standard boosts wireless throughput from 2 Mbps all the way up to 11 Mbps. 802.11b can transmit up to 200 feet under good conditions, although this distance may be reduced considerably by the presence of obstacles such as walls.

This standard uses DSSS. With DSSS, each bit transmitted is encoded and the encoded bits are sent in parallel across an entire range of frequencies. The code used in a transmission is known only to the sending and receiving stations. By transmitting identical signals across the entire range of frequencies, DSSS helps to reduce interference and makes it possible to recover lost data without retransmission.

IEEE 802.11a
The 802.11a wireless Ethernet standard is new on the scene. It uses a different band than 802.11b—the 5.8-GHz band called U-NII (Unlicensed National Information Infrastructure) in the United States. Because the U-NII band has a higher frequency and a larger bandwidth allotment than the 2.4-GHz band, the 802.11a standard achieves speeds of up to 54 Mbps. However, it’s more limited in range than 802.11b. It uses an orthogonal frequency-division multiplexing (OFDM) encoding scheme rather than FHSS or DSSS.

IEEE 802.11g
802.11g is an extension of 802.11b and operates in the same 2.4-GHz band as 802.11b. It brings data rates up to 54 Mbps using OFDM technology.

Because it's actually an extension of 802.11b, 802.11g is backward-compatible with 802.11b—an 802.11b device can interface directly with an 802.11g access point. However, because 802.11g also runs on the same three channels as 802.11b, it can crowd already busy frequencies.

Super G® is a subset of 802.11g and is a proprietary extension of the 802.11g standard that doubles throughput to 108 Mbps. Super G is not an IEEE approved standard. If you use it, you should use devices from one vendor to ensure compatibility. Super G is generally backwards compatible with 802.11g.

802.11n
80211n improves upon 802.11g significantly with an increase in the data rate to 600 Mbps. Channels operate at 40 MHz doubling the channel width from 20 MHz. 802.11n operates on both the 2.4 GHz and the 5 GHz bands. 802.11n also added multiple-input multiple-output antennas (MIMO) collapse

Results 1-5 of 5 1 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services