Categories (x) > Networking > Switches (x)
Content Type (x) > Black Box Explains (x)

Results 11-19 of 19 < 1 2 

Black Box Explains…SFP compatibility.

Standards for SFP fiber optic media are published in the SFP Multi-Source Agreement, which specifies size, connectors, and signaling for SFPs, with the idea that all SFPs are compatible with... more/see it nowdevices that have appropriate SFP slots. These standards, which also extend to SFP+ and XFP transceivers, enable users to mix and match components from different vendors to meet their own particular requirements.

However, some major manufacturers, notably Cisco®, HP®, and 3Com®, sell network devices with SFP slots that lock out transceivers from other vendors. Because the price of SFPs—especially Gigabit SFPs and 10GBASE SFP+ and XFP transceivers—can add significantly to the price of a switch, this lock-out scheme raises hardware costs and limits transceiver choices.

Many vendors don’t advertise that SFP slots on their devices don’t accept standard SFPs from other vendors. This can lead to unpleasant surprises when a device simply refuses to communicate with an SFP.

Another game that some vendors play is to build devices that accept open-standard SFPs, but refuse to support those devices when SFPs from another vendor are used with them.

The only way around this “lock-in” practice is to only buy network devices that accept standard SFPs from all vendors and to buy from vendors that support their devices no matter whose SFPs are used with them. Questions? Call our FREE Tech Support at 724-746-5500. collapse

Black Box Explains...Ethernet hubs vs. Ethernet switches.

Although hubs and switches look very similar and are connected to the network in much the same way, there is a significant difference in the way they function.

What is a... more/see it nowhub?
An Ethernet hub is the basic building block of a twisted-pair (10BASE-T or 100BASE-TX) Ethernet network. Hubs do little more than act as a physical connection. They link PCs and peripherals and enable them to communicate over a network. All data coming into the hub travels to all stations connected to the hub. Because a hub doesn’t use management or addressing, it simply divides the 10- or 100-Mbps bandwidth among users. If two stations are transferring high volumes of data between them, the network performance of all stations on that hub will suffer. Hubs are good choices for small- or home-office networks, particularly if bandwidth concerns are minimal.

What is a switch?
An Ethernet switch, on the other hand, provides a central connection in an Ethernet network in which each connected device has its own dedicated link with full bandwidth. Switches divide LAN data into smaller, easier-to-manage segments and send data only to the PCs it needs to reach. They allot a full 10 or 100 Mbps to each user with addressing and management features. As a result, every port on the switch represents a dedicated 10- or 100-Mbps pathway. Because users connected to a switch do not have to share bandwidth, a switch offers relief from the network congestion a shared hub can cause.

What to consider when selecting an Ethernet hub:
• Stackability. Select a stackable hub connected with a special cable so you can start with one hub and add others as you need more ports. The entire stack functions as one device.
• Manageability. Choose an SNMP-manageable hub if you have a large, managed network.

What to consider when selecting an Ethernet switch:
• Manageability. Ethernet switches intended for large managed networks feature built-in management, usually SNMP.
• OSI Layer operation. Most Ethernet switches operate at “Layer 2,” which is for the physical network addresses (MAC addresses). Layer 3 switches use network addresses, and incorporate routing functions to actively calculate the best way to send a packet to its destination. Very advanced Ethernet switches, often known as routing switches, operate on OSI Layer 4 and route network traffic according to the application.
• Modular construction. A modular switch enables you to populate a chassis with modules of different speeds and media types. Because you can easily change modules, the modular switch is an adaptable solution for large, growing networks.
• Stackability. Some Ethernet switches can be connected to form a stack of two or more switches that functions as a single network device. This enables you to start with fewer ports and add them as your network grows. collapse

Black Box Explains...LAN switches.

Rush hour-all day, every day.

Applications such as document imaging, video/multimedia production, and intranetworking are very demanding. They generate huge data files that often must be transferred... more/see it nowbetween stations based on strict timing requirements. If such traffic is not transmitted efficiently, you end up with jerky video, on-screen graphics that take forever to load, or other irritating, debilitating problems.

These problems arise because in traditional LANs, only one network node transmits data at a time while all other stations listen. This works in conventional, server-based LANs where multiple workstations share files or applications housed on a central server. But if a network has several servers, or if it supports high-bandwidth, peer-to-peer applications such as videoconferencing, the one-station-at-a-time model just doesn’t work.

Ideally, each LAN workstation should be configured with its own dedicated LAN cable segment. But that’s neither practical nor affordable. A far more reasonable solution is a network designed to provide clear paths from each workstation to its destination on demand, whether that destination is another workstation or server.

These vehicles clear the lanes.

Unlike bridges and routers, which process data packets on an individual, first-come, first-served basis, switches maintain multiple, simultaneous data conversions among attached LAN segments.

From the perspective of an end-user workstation, a switched circuit appears to be a dedicated connection-a direct, full-speed LAN link to an attached server or other remote LAN node. Although this technique is somewhat different from what a LAN bridge or router does, switching hubs are based on similar technologies.

Which route will you choose?

Switching hubs that use bridging technologies are called Layer 2 switches-a reference to Layer 2 or the Data-Link Layer of the OSI Model. These switches operate using the MAC addresses in Layer 2 and are transparent to network protocols. Switches that use routing technologies are known as Layer 3 switches, referring to Layer 3—the Network Layer—of the OSI Model. These switches, like routers, represent the next higher level of intelligence in the hardware hierarchy. Rather than passing packets based on MAC addresses, these switches look into the data structure and route it based on the network addresses found in Layer 3. They are also dependent on the network protocol.

Layer 2 switches connect different parts of the same network as determined by the network number contained with the data packet. Layer 3 switches connect LANs or LAN segments with different network numbers.

If you’re subdividing an existing LAN, obviously you’re dealing with only one network and one network number, so you can install a Layer 2 switch wherever it will segment network traffic the best, and you don’t have to reconfigure the LAN. However, if you use a Layer 3 switch, you’ll have to reconfigure the segments to ensure that each has a different network number.

Similarly, if you’re connecting existing networks, you have to examine the currently configured network numbers before adding a switch. If the network numbers are the same, you need to use a Layer 2 switch. If they’re different, you must use a Layer 3 switch.

When dealing with multiple existing networks, you’ll find they usually use different network numbers. In this case, it’s preferable to use a Layer 3 switch (or possibly even a full-featured router) to avoid reconfiguring the network.

But what if you’re designing a network from scratch and can choose either type of switch? Your decision should be based on the expected complexity of your LAN. Layer 3 routing technology is well suited for complex networks. Layer 2 switches are recommended for smaller, less complex networks.


Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms

    Black Box Explains...Gigabit Ethernet.

    As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

    Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

    The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

    One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

    Affordability and adaptability
    You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

    Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

    When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

    1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

    The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

    The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

    The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

    Gigabit over CAT5—1000BASE-TX
    The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

    Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse

    Black Box Explains... GBICs

    A Gigabit Interface Converter (GBIC) is a transceiver that converts digital electrical currents to optical signals and back again. GBICs support speeds of 1 Gbps or more and are typically... more/see it nowused as an interface between a high-speed Ethernet or ATM switch and a fiber backbone. GBICs are hot-swappable, so switches don’t need to be powered down for their installation. collapse

    Black Box Explains...Layer 3 switching.

    In the last decade, network topologies have typically featured routers along with hubs or switches. The hub or switch acts as a central wiring point for LAN segments while the... more/see it nowrouter takes care of higher-level functions such as protocol translation, traffic between LAN segments, and wide-area access.

    Layer 3 switching, which combines Layer 2 switching and Layer 3 IP routing, provides a more cost-effective way of setting up LANs by incorporating switching and routing into one device. While a traditional Layer 2 switch simply sends data along without examining it, a Layer 3 switch incorporates some features of a router in that it examines data packets before sending them on their way. The integration of switching and routing in a Layer 3 switch takes advantage of the speed of a switch and the intelligence of a router in one economical package.

    There are two basic types of Layer 3 switching: packet-by-packet Layer 3 (PPL3) and cut-through Layer 3.

    PPL3 switches are technically routers in that they examine all packets before forwarding them to their destinations. They achieve top speed by running protocols such as OSPF (Open Shortest Path First) and by using cache routing tables. Because these switches understand and take advantage of network topology, they can blow the doors off traditional routers with speeds of more than 7,000,000 (that’s seven million!) packets per second.

    Cut-through Layer 3 switching relies on a shortcut for top speed. Cut-through Layer 3 switches, rather than examining every packet, examine only the first in a series to determine its destination. Once the destination is known, the data flow is switched at Layer 2 to achieve high speeds. collapse

    Black Box Explains...SFP, SFP+, and XFP transceivers.

    SFP, SFP+, and XFP are all terms for a type of transceiver that plugs into a special port on a switch or other network device to convert the port to... more/see it nowa copper or fiber interface. These compact transceivers replace the older, bulkier GBIC interface. Although these devices are available in copper, their most common use is to add fiber ports. Fiber options include multimode and single-mode fiber in a variety of wavelengths covering distances of up to 120 kilometers (about 75 miles), as well as WDM fiber, which uses two separate wavelengths to both send and receive data on a single fiber strand.

    SFPs support speeds up to 4.25 Gbps and are generally used for Fast Ethernet or Gigabit Ethernet applications. The expanded SFP standard, SFP+, supports speeds of 10 Gbps or higher over fiber. XFP is a separate standard that also supports 10-Gbps speeds. The primary difference between SFP+ and the slightly older XFP standard is that SFP+ moves the chip for clock and data recovery into a line card on the host device. This makes an SFP+ smaller than an XFP, enabling greater port density.

    Because all these compact transcievers are hot-swappable, there’s no need to shut down a switch to swap out a module—it’s easy to change interfaces on the fly for upgrades and maintenance.

    Another characteristic shared by this group of transcievers is that they’re OSI Layer 1 devices—they’re transparent to data and do not examine or alter data in any way. Although they’re primarily used with Ethernet, they’re also compatible with uncommon or legacy standards such as Fibre Channel, ATM, SONET, or Token Ring.

    Formats for SFP, SFP+, and XFP transceivers have been standardized by multisource agreements (MSAs) between manufacturers, so physical dimensions, connectors, and signaling are consistent and interchangeable. Be aware though that some major manufacturers, notably Cisco, sell network devices with slots that lock out transceivers from other vendors. collapse

    Black Box Explains...Media converters that are really switches.

    A media converter is a device that converts from one media type to another, for instance, from twisted pair to fiber to take advantage of fiber’s greater range. A traditional... more/see it nowmedia converter is a two-port Layer 1 device that performs a simple conversion of only the physical interface. It’s transparent to data and doesn't “see” or manipulate data in any way.

    An Ethernet switch can also convert one media type to another, but it also creates a separate collision domain for each switch port, so that each packet is routed only to the destination device, rather than around to multiple devices on a network segment. Because switches are “smarter” than traditional media converters, they enable additional features such as multiple ports and copper ports that autosense for speed and duplex.

    Switches are beginning to replace traditional 2-port media converters, leading to some fuzziness in terminology. Small 4- or 6-port Ethernet switches are very commonly called media converters. In fact, anytime you see a “Layer 2” media converter or a media converter with more than two ports, it’s really a small Ethernet switch. collapse

    Results 11-19 of 19 < 1 2 


    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Black Box 1-800-316-7107 Black Box Network Services