Loading


Categories (x) > Networking > Switches (x)
Content Type (x) > Black Box Explains (x)

Results 11-19 of 19 < 1 2 

Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms
    collapse


    Black Box Explains... GBICs

    A Gigabit Interface Converter (GBIC) is a transceiver that converts digital electrical currents to optical signals and back again. GBICs support speeds of 1 Gbps or more and are typically... more/see it nowused as an interface between a high-speed Ethernet or ATM switch and a fiber backbone. GBICs are hot-swappable, so switches don’t need to be powered down for their installation. collapse


    Black Box Explains...PoE phantom power.

    10BASE-T and 100BASE-TX Ethernet use only two pairs of wire in 4-pair CAT5/CAT5e/CAT6 cable, leaving the other two pairs free to transmit power for Power over Ethernet (PoE) applications. However,... more/see it nowGigabit Ethernet or 1000BASE-T uses all four pairs of wires, leaving no pairs free for power. So how can PoE work over Gigabit Ethernet?

    The answer is through the use of phantom power—power sent over the same wire pairs used for data. When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

    10- and 100-Mbps PoE may also use phantom power. The 802.3af PoE standard for use with 10BASE-T and 100BASE-TX defines two methods of power transmission. In one method, called Alternative A, power and data are sent over the same pair. In the other method, called Alternative B, two wire pairs are used to transmit data, and the remaining two pairs are used for power. That there are two different PoE power-transmission schemes isn’t obvious to the casual user because PoE Powered Devices (PDs) are made to accept power in either format. collapse


    Black Box Explains…SFP compatibility.

    Standards for SFP fiber optic media are published in the SFP Multi-Source Agreement, which specifies size, connectors, and signaling for SFPs, with the idea that all SFPs are compatible with... more/see it nowdevices that have appropriate SFP slots. These standards, which also extend to SFP+ and XFP transceivers, enable users to mix and match components from different vendors to meet their own particular requirements.

    However, some major manufacturers, notably Cisco®, HP®, and 3Com®, sell network devices with SFP slots that lock out transceivers from other vendors. Because the price of SFPs—especially Gigabit SFPs and 10GBASE SFP+ and XFP transceivers—can add significantly to the price of a switch, this lock-out scheme raises hardware costs and limits transceiver choices.

    Many vendors don’t advertise that SFP slots on their devices don’t accept standard SFPs from other vendors. This can lead to unpleasant surprises when a device simply refuses to communicate with an SFP.

    Another game that some vendors play is to build devices that accept open-standard SFPs, but refuse to support those devices when SFPs from another vendor are used with them.

    The only way around this “lock-in” practice is to only buy network devices that accept standard SFPs from all vendors and to buy from vendors that support their devices no matter whose SFPs are used with them. Questions? Call our FREE Tech Support at 724-746-5500. collapse


    Black Box Explains…Media converters that also work as switches.

    Media converters transparently convert the incoming electrical signal from one cable type and then transmit it over another type—thick coax to Thin, UTP to fiber, and so on. Traditionally, media... more/see it nowconverters were purely Layer 1 devices that only converted electrical signals and physical media and didn’t do anything to the data coming through the link.

    Today’s media converters, however, are often more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services and route Ethernet packets based on MAC address. These media converters are often called media converter switches, switching media converters, or Layer 2 media converters. They enable you to have multiple connections rather than just one simple in-and-out connection. And because they’re switches, they increase network efficiency.

    Media converters are often used to connect newer 100-Mbps, Gigabit Ethernet, or ATM equipment to existing networks, which are generally 10BASE-T, 100BASE-T, or a mixture of both. They can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference.

    Rent an apartment…
    Media converters are available in standalone models that convert between two different media types and in chassis-based models that house many media converters in a a single chassis.

    Standalone models convert between two media. But, like a small apartment, they can be outgrown.

    Consider your current and future applications before selecting a media converter. A good way to anticipate future network requirements is to choose media converters that work as standalone devices but can be rackmounted if needed later.

    …or buy a house.
    Chassis-based or modular media converter systems are normally rackmountable and have slots to house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and they enable you to mix different media types such as 10BASE-T, 100BASE-TX, 100BASE-FX, ATM, and Gigabit modules. Although enterprise-level chassis-based systems generally have modules that can only be used in a chassis, many midrange systems feature modules that can be used individually or in a chassis. collapse


    Black Box Explains…Energy-Efficient Ethernet.

    The IEEE 802.3az Ethernet standard, ratified in 2010, provides a standardized way for some Ethernet devices to reduce power consumption. Energy-Efficient Ethernet devices have a low-power idle (LPI) mode that... more/see it nowcan cut power use by 50% or more during periods of low data activity. Because energy-efficient Ethernet devices scale down power consumption when the load is lower, they save both the energy used to power processors and the energy used to cool them.

    These energy savings are currently available for 100BASE-TX, 1000BASE-T, and 10GBASE-T Ethernet as well as some backplane Ethernet. 802.3az can be found on most types of network equipment, including NICs, switches, routers, and media converters. Because these devices are totally backwards compatible with other Ethernet devices, all you need to do to reap energy savings is to swap out devices. collapse


    Black Box Explains...Layer 3 switching.

    In the last decade, network topologies have typically featured routers along with hubs or switches. The hub or switch acts as a central wiring point for LAN segments while the... more/see it nowrouter takes care of higher-level functions such as protocol translation, traffic between LAN segments, and wide-area access.

    Layer 3 switching, which combines Layer 2 switching and Layer 3 IP routing, provides a more cost-effective way of setting up LANs by incorporating switching and routing into one device. While a traditional Layer 2 switch simply sends data along without examining it, a Layer 3 switch incorporates some features of a router in that it examines data packets before sending them on their way. The integration of switching and routing in a Layer 3 switch takes advantage of the speed of a switch and the intelligence of a router in one economical package.

    There are two basic types of Layer 3 switching: packet-by-packet Layer 3 (PPL3) and cut-through Layer 3.

    PPL3 switches are technically routers in that they examine all packets before forwarding them to their destinations. They achieve top speed by running protocols such as OSPF (Open Shortest Path First) and by using cache routing tables. Because these switches understand and take advantage of network topology, they can blow the doors off traditional routers with speeds of more than 7,000,000 (that’s seven million!) packets per second.

    Cut-through Layer 3 switching relies on a shortcut for top speed. Cut-through Layer 3 switches, rather than examining every packet, examine only the first in a series to determine its destination. Once the destination is known, the data flow is switched at Layer 2 to achieve high speeds. collapse


    Black Box Explains...Media converters that are really switches.

    A media converter is a device that converts from one media type to another, for instance, from twisted pair to fiber to take advantage of fiber’s greater range. A traditional... more/see it nowmedia converter is a two-port Layer 1 device that performs a simple conversion of only the physical interface. It’s transparent to data and doesn't “see” or manipulate data in any way.

    An Ethernet switch can also convert one media type to another, but it also creates a separate collision domain for each switch port, so that each packet is routed only to the destination device, rather than around to multiple devices on a network segment. Because switches are “smarter” than traditional media converters, they enable additional features such as multiple ports and copper ports that autosense for speed and duplex.

    Switches are beginning to replace traditional 2-port media converters, leading to some fuzziness in terminology. Small 4- or 6-port Ethernet switches are very commonly called media converters. In fact, anytime you see a “Layer 2” media converter or a media converter with more than two ports, it’s really a small Ethernet switch. collapse


    The difference between unmanaged, managed, and Web-smart switches

    With regard to management options, the three primary classes of switches are unmanaged, managed, and Web smart. Which you choose depends largely on the size of your network and how... more/see it nowmuch control you need over that network.

    Unmanaged switches are basic plug-and-play switches with no remote configuration, management, or monitoring options, although many can be locally monitored and configured via LED indicators and DIP switches. These inexpensive switches are typically used in small networks or to add temporary workgroups to larger networks.

    Managed switches support Simple Network Management Protocol (SNMP) via embedded agents and have a command line interface (CLI) that can be accessed via serial console, Telnet, and Secure Shell. These switches can often be configured and managed as groups. More recent managed switches may also support a Web interface for management through a Web browser.

    These high-end switches enable network managers to remotely access a wide range of capabilities including:

  • SNMP monitoring.
  • Enabling and disabling individual ports or port Auto MDI/MDI-X.
  • Port bandwidth and duplex control.
  • IP address management.
  • MAC address filtering.
  • Spanning Tree.
  • Port mirroring to monitor network traffic.
  • Prioritization of ports for quality of service (QoS).
  • VLAN settings.
  • 802.1X network access control.
  • IGMP snooping.
  • Link aggregation or trunking.

  • Managed switches, with their extensive management capabilities, are at home in large enterprise networks where network administrators need to monitor and control a large number of network devices. Managed switches support redundancy protocols for increased network availability.

    Web-smart switches—sometimes called smart switches or Web-managed switches—have become a popular option for mid-sized networks that require management. They offer access to switch management features such as port monitoring, link aggregation, and VPN through a simple Web interface via an embedded Web browser. What these switches generally do not have is SNMP management capabilities or a CLI. Web-smart switches must usually be managed individually rather than in groups.

    Although the management features found in a Web-smart switch are less extensive than those found in a fully managed switch, these switches are becoming smarter with many now offering many of the features of a fully managed switch. Like managed switches, they also support redundancy protocols for increased network availability.

    collapse

    Results 11-19 of 19 < 1 2 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-800-316-7107 Black Box Network Services