Categories (x) > Networking > Switches > Commercial/Office Grade (x)

Results 41-50 of 81 < 1 2 3 4 5 > >> 
  • Manual... 
  • LPB5000 Series Gigabit PoE+ Ethernet Managed Switch Eco User Manual
    User Manual for the LPB5028A and LPB5052A (Version 1)

Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.
• Use one set of twisted-pair wires for both data and low-wattage appliances.
• In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
• Save money by eliminating the need to run electrical wiring.
• Easily move an appliance with minimal disruption.
• If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

Black Box Explains...SFP, SFP+, and XFP transceivers.

SFP, SFP+, and XFP are all terms for a type of transceiver that plugs into a special port on a switch or other network device to convert the port to... more/see it nowa copper or fiber interface. These compact transceivers replace the older, bulkier GBIC interface. Although these devices are available in copper, their most common use is to add fiber ports. Fiber options include multimode and single-mode fiber in a variety of wavelengths covering distances of up to 120 kilometers (about 75 miles), as well as WDM fiber, which uses two separate wavelengths to both send and receive data on a single fiber strand.

SFPs support speeds up to 4.25 Gbps and are generally used for Fast Ethernet or Gigabit Ethernet applications. The expanded SFP standard, SFP+, supports speeds of 10 Gbps or higher over fiber. XFP is a separate standard that also supports 10-Gbps speeds. The primary difference between SFP+ and the slightly older XFP standard is that SFP+ moves the chip for clock and data recovery into a line card on the host device. This makes an SFP+ smaller than an XFP, enabling greater port density.

Because all these compact transcievers are hot-swappable, there’s no need to shut down a switch to swap out a module—it’s easy to change interfaces on the fly for upgrades and maintenance.

Another characteristic shared by this group of transcievers is that they’re OSI Layer 1 devices—they’re transparent to data and do not examine or alter data in any way. Although they’re primarily used with Ethernet, they’re also compatible with uncommon or legacy standards such as Fibre Channel, ATM, SONET, or Token Ring.

Formats for SFP, SFP+, and XFP transceivers have been standardized by multisource agreements (MSAs) between manufacturers, so physical dimensions, connectors, and signaling are consistent and interchangeable. Be aware though that some major manufacturers, notably Cisco, sell network devices with slots that lock out transceivers from other vendors. collapse

  • Manual... 
  • Web Smart Gigabit Ethernet Switch User Manual
    User Manual for the LGB708 (Version 1)
  • Manual... 
  • SFP Gigabit Managed Fiber Switch Eco CLI Guide
    CLI Guide for the LGB5124A and LGB5128A (Version 1)

Black Box Explains...Gigabit Ethernet.

As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

Affordability and adaptability
You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

Gigabit over CAT5—1000BASE-TX
The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse

  • Quick Start Guide... 
  • Gigabit Smart Switch (Eco Fanless) QSG
    QSG for the LGB2118A & LGB2124A (Version 1)
  • Manual... 
  • Gigabit Managed Switch CLI Guide
    CLI Guide for the LGB1126A and LGB1148A (Version 1)

  • Visio Stencil Drawing... 
  • Visio Stencil
    Stencil Drawings
Results 41-50 of 81 < 1 2 3 4 5 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Black Box 1-877-877-2269 Black Box Network Services