Loading


Categories (x) > Networking > Switches > Commercial/Office Grade > 12- to 18-Port (x)

Results 1-10 of 23 1 2 3 > 

Product Data Sheets (pdf)...Express Ethernet Switches


Black Box Explains…SFP compatibility.

Standards for SFP fiber optic media are published in the SFP Multi-Source Agreement, which specifies size, connectors, and signaling for SFPs, with the idea that all SFPs are compatible with... more/see it nowdevices that have appropriate SFP slots. These standards, which also extend to SFP+ and XFP transceivers, enable users to mix and match components from different vendors to meet their own particular requirements.

However, some major manufacturers, notably Cisco®, HP®, and 3Com®, sell network devices with SFP slots that lock out transceivers from other vendors. Because the price of SFPs—especially Gigabit SFPs and 10GBASE SFP+ and XFP transceivers—can add significantly to the price of a switch, this lock-out scheme raises hardware costs and limits transceiver choices.

Many vendors don’t advertise that SFP slots on their devices don’t accept standard SFPs from other vendors. This can lead to unpleasant surprises when a device simply refuses to communicate with an SFP.

Another game that some vendors play is to build devices that accept open-standard SFPs, but refuse to support those devices when SFPs from another vendor are used with them.

The only way around this “lock-in” practice is to only buy network devices that accept standard SFPs from all vendors and to buy from vendors that support their devices no matter whose SFPs are used with them. Questions? Call our FREE Tech Support at 724-746-5500. collapse


Product Data Sheets (pdf)...Back Office Switches


Black Box Explains...Virtual LANs (VLANs).

True to their name, VLANs are literally “virtual“ LANs—mini subLANs that, once configured, can exist and function logically as single, secure network segments, even though they may be part of... more/see it nowa much larger physical LAN.

VLAN technology is ideal for enterprises with far-reaching networks. Instead of having to make expensive, time-consuming service calls, system administrators can configure or reconfigure workstations easily or set up secure network segments using simple point-and-click, drag-and-drop management utilities. VLANs provide a way to define dynamic new LAN pathways and create innovative virtual network segments that can range far beyond the traditional limits of geographically isolated workstation groups radiating from centralized hubs.

For instance, using VLAN switches, you can establish a secure VLAN made up of select devices located throughout your enterprise (managers’ workstations, for example) or any other device that you decide requires full access to the VLAN you’ve created.

According to Cisco, a VLAN is a switched network logically segmented by functions, project teams, or applications regardless of the physical location of users. You can assign each switch port to a different VLAN. Ports configured in the same VLAN share broadcasts; ports that don’t belong to the VLAN don’t share the data.

VLAN switches group users and ports logically across the enterprise—they don’t impose physical constraints like in a shared-hub architecture. In replacing shared hubs, VLAN switches remove the physical barriers imposed by each wiring closet.

To learn more about smart networking with VLANs, call the experts in our Local Area Network Support group at 724-746-5500, press 1, 2, 4. collapse

  • Quick Start Guide... 
  • Gigabit Smart Switch (Eco Fanless) QSG
    QSG for the LGB2118A & LGB2124A (Version 1)
 

Product Data Sheets (pdf)...L2 Managed Gigabit Ethernet Switches with Dual-Media SFP Ports WebSmart Gigabit Switches


Black Box Explains...Ethernet.



If you have an existing network, there’s a 90% chance it’s Ethernet. If you’re installing a new network, there’s a 98% chance it’s Ethernet—the Ethernet standard is... more/see it nowthe overwhelming favorite network standard today.


Ethernet was developed by Xerox®, DEC®, and Intel® in the mid-1970s as a 10-Mbps (Megabits per second) networking protocol—very fast for its day—operating over a heavy coax cable (Standard Ethernet).


Today, although many networks have migrated to Fast Ethernet (100 Mbps) or even Gigabit Ethernet (1000 Mbps), 10-Mbps Ethernet is still in widespread use and forms the basis of most networks.


Ethernet is defined by international standards, specifically IEEE 802.3. It enables the connection of up to 1024 nodes over coax, twisted-pair, or fiber optic cable. Most new installations today use economical, lightweight cables such as Category 5 unshielded twisted-pair cable and fiber optic cable.


How Ethernet Works

Ethernet signals are transmitted from a station serially, one bit at a time, to every other station on the network.


Ethernet uses a broadcast access method called Carrier Sense Multiple Access/Collision Detection (CSMA/CD) in which every computer on the network “hears” every transmission, but each computer “listens” only to transmissions intended for it.


Each computer can send a message anytime it likes without having to wait for network permission. The signal it sends travels to every computer on the network. Every computer hears the message, but only the computer for which the message is intended recognizes it. This computer recognizes the message because the message contains its address. The message also contains the address of the sending computer so the message can be acknowledged.


If two computers send messages at the same moment, a “collision” occurs, interfering with the signals. A computer can tell if a collision has occurred when it doesn’t hear its own message within a given amount of time. When a collision occurs, each of the colliding computers waits a random amount of time before resending the message.


The process of collision detection and retransmission is handled by the Ethernet adapter itself and doesn’t involve the computer. The process of collision resolution takes only a fraction of a second under most circumstances. Collisions are normal and expected events on an Ethernet network. As more computers are added to the network and the traffic level increases, more collisions occur as part of normal operation. However, if the network gets too crowded, collisions increase to the point where they slow down the network considerably.


Standard (Thick) Ethernet (10BASE5)


  • Uses “thick” coax cable with N-type connectors for a backbone and a transceiver cable with 9-pin connectors from the transceiver to the NIC.
  • Both ends of each segment should be terminated with a 50-ohm resistor.
  • Maximum segment length is 500 meters.
  • Maximum total length is 2500 meters.
  • Maximum length of transceiver cable is 50 meters.
  • Minimum distance between transceivers is 2.5 meters.
  • No more than 100 transceiver connections per segment are allowed.
Thin Ethernet (ThinNet) (10BASE2)


  • Uses "Thin" coax cable.
  • The maximum length of one segment is 185 meters.
  • The maximum number of segments is five.
  • The maximum total length of all segments is 925 meters.
  • The minimum distance between T-connectors is 0.5 meters.
  • No more than 30 connections per segment are allowed.
  • T-connectors must be plugged directly into each device.
Twisted-Pair Ethernet (10BASE-T)


  • Uses 22 to 26 AWG unshielded twisted-pair cable (for best results, use Category 4 or 5 unshielded twisted pair).
  • The maximum length of one segment is 100 meters.
  • Devices are connected to a 10BASE-T hub in a star configuration.
  • Devices with standard AUI connectors may be attached via a 10BASE-T transceiver.
Fiber Optic Ethernet (10BASE-FL, FOIRL)


  • Uses 50-, 62.5-, or 100-micron duplex multimode fiber optic cable (62.5 micron is recommended).
  • The maximum length of one 10BASE-FL (the new standard for fiber optic connections) segment is 2 kilometers.
  • The maximum length of one FOIRL (the standard that preceded the new 10BASE-FL) segment is 1 kilometer.
collapse

  • Manual... 
  • Unmanaged Gigabit Switch
    (Version 1)
 
  • Manual... 
  • 10/100 PSE Web Smart Switch User Manual
    User Manual for 10/100 PSE Web Smart Switch (2)
 

Black Box Explains...Layer 2, 3, and 4 switching.

The Open Systems Interconnection (OSI) Reference Model provides a layered network design framework that establishes a standard so that devices from different vendors work together.

Layer 2 (The Data-Link Layer)
Layer 2... more/see it nowswitches operate using physical network addresses. Physical addresses, also known as link-layer, hardware, or MAC-layer addresses, identify individual devices. Most hardware devices are permanently assigned this number during the manufacturing process.

Switches operating at Layer 2 are very fast because they’re just sorting physical addresses, but they usually aren’t very smart.

Layer 3 (The Network Layer)
Layer 3 switches use network or IP addresses that identify locations on the network. Physical addresses identify devices; network addresses identify locations. A location can be a LAN workstation, a location in a computer’s memory, or even a packet of data traveling through a network.

Network addresses are hierarchical. The more details included, the more specific the address becomes and the easier it is to find.

Switches operating at Layer 3 are smarter than Layer 2 devices and incorporate routing functions to actively calculate the best way to send a packet to its destination. However, because Layer 3 Switches take the extra time to read more details of a network address, they are sometimes much slower than Layer 2 Switches.

Layer 4 (The Transport Layer)
Layer 4 of the OSI Model coordinates communications between systems. Layer 4 identifies which application protocols (HTTP, SNTP, FTP, etc.) are included with each packet and uses this information to hand off the packet to the appropriate higher-layer software. Layer 4 switches make packet forwarding decisions based not only on the MAC address and IP address, but also on the application a packet belongs to.

Because Layer 4 devices enable you to establish priorities for network traffic based on application, you can assign a high priority to packets belonging to vital in-house applications, such as Peoplesoft®, with different forwarding rules for low-priority packets, such as generic HTTP-based Internet traffic.

Layer 4 switches also provide an effective wire-speed security shield for your network. collapse

Results 1-10 of 23 1 2 3 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services