Categories (x) > Networking > Switches > Commercial/Office Grade > 12- to 18-Port (x)

Results 1-10 of 21 1 2 3 > 
  • Quick Start Guide... 
  • Gigabit Smart Switch (Eco Fanless) QSG
    QSG for the LGB2118A & LGB2124A (Version 2)

Black Box Explains...Virtual LANs (VLANs).

True to their name, VLANs are literally “virtual“ LANs—mini subLANs that, once configured, can exist and function logically as single, secure network segments, even though they may be part of... more/see it nowa much larger physical LAN.

VLAN technology is ideal for enterprises with far-reaching networks. Instead of having to make expensive, time-consuming service calls, system administrators can configure or reconfigure workstations easily or set up secure network segments using simple point-and-click, drag-and-drop management utilities. VLANs provide a way to define dynamic new LAN pathways and create innovative virtual network segments that can range far beyond the traditional limits of geographically isolated workstation groups radiating from centralized hubs.

For instance, using VLAN switches, you can establish a secure VLAN made up of select devices located throughout your enterprise (managers’ workstations, for example) or any other device that you decide requires full access to the VLAN you’ve created.

According to Cisco, a VLAN is a switched network logically segmented by functions, project teams, or applications regardless of the physical location of users. You can assign each switch port to a different VLAN. Ports configured in the same VLAN share broadcasts; ports that don’t belong to the VLAN don’t share the data.

VLAN switches group users and ports logically across the enterprise—they don’t impose physical constraints like in a shared-hub architecture. In replacing shared hubs, VLAN switches remove the physical barriers imposed by each wiring closet.

To learn more about smart networking with VLANs, call the experts in our Local Area Network Support group at 724-746-5500, press 1, 2, 4. collapse

Black Box Explains...Layer 2, 3, and 4 switches.

...more/see it now
OSI Layer Physical
7-Application Applicaton Software

LAN-Compatible Software
E-Mail, Diagnostics, Word Processing, Database

Network Applications
6-Presentation Data-
Conversion Utilities
Vendor-Specific Network Shells and Gateway™ Workstation Software
5-Session Network Operating System SPX NetBIOS DECnet™ TCP/IP AppleTalk®
4-Transport Novell® NetWare® IPX™ PC LAN LAN Mgr DECnet PC/TCP® VINES™ NFS TOPS® Apple
3-Network Control
2-Data Link Network E A TR P TR E TR E E E P E P
1-Physical E=Ethernet; TR=Token Ring; A=ARCNET®; P=PhoneNET®

With the rapid development of computer networks over the last decade, high-end switching has become one of the most important functions on a network for moving data efficiently and quickly from one place to another.

Here’s how a switch works: As data passes through the switch, it examines addressing information attached to each data packet. From this information, the switch determines the packet’s destination on the network. It then creates a virtual link to the destination and sends the packet there.

The efficiency and speed of a switch depends on its algorithms, its switching fabric, and its processor. Its complexity is determined by the layer at which the switch operates in the OSI (Open Systems Interconnection) Reference Model (see above).

OSI is a layered network design framework that establishes a standard so that devices from different vendors work together. Network addresses are based on this OSI Model and are hierarchical. The more details that are included, the more specific the address becomes and the easier it is to find.

The Layer at which the switch operates is determined by how much addressing detail the switch reads as data passes through.

Switches can also be considered low end or high end. A low-end switch operates in Layer 2 of the OSI Model and can also operate in a combination of Layers 2 and 3. High-end switches operate in Layer 3, Layer 4, or a combination of the two.

Layer 2 Switches (The Data-Link Layer)

Layer 2 switches operate using physical network addresses. Physical addresses, also known as link-layer, hardware, or MAC-layer addresses, identify individual devices. Most hardware devices are permanently assigned this number during the manufacturing process.

Switches operating at Layer 2 are very fast because they’re just sorting physical addresses, but they usually aren’t very smart—that is, they don’t look at the data packet very closely to learn anything more about where it’s headed.

Layer 3 Switches (The Network Layer)

Layer 3 switches use network or IP addresses that identify locations on the network. They read network addresses more closely than Layer 2 switches—they identify network locations as well as the physical device. A location can be a LAN workstation, a location in a computer’s memory, or even a different packet of data traveling through a network.

Switches operating at Layer 3 are smarter than Layer 2 devices and incorporate routing functions to actively calculate the best way to send a packet to its destination. But although they’re smarter, they may not be as fast if their algorithms, fabric, and processor don’t support high speeds.

Layer 4 Switches (The Transport Layer)

Layer 4 of the OSI Model coordinates communications between systems. Layer 4 switches are capable of identifying which application protocols (HTTP, SNTP, FTP, and so forth) are included with each packet, and they use this information to hand off the packet to the appropriate higher-layer software. Layer 4 switches make packet-forwarding decisions based not only on the MAC address and IP address, but also on the application to which a packet belongs.

Because Layer 4 devices enable you to establish priorities for network traffic based on application, you can assign a high priority to packets belonging to vital in-house applications such as Peoplesoft, with different forwarding rules for low-priority packets such as generic HTTP-based Internet traffic.

Layer 4 switches also provide an effective wire-speed security shield for your network because any company- or industry-specific protocols can be confined to only authorized switched ports or users. This security feature is often reinforced with traffic filtering and forwarding features.


The difference between unmanaged, managed, and Web-smart switches

With regard to management options, the three primary classes of switches are unmanaged, managed, and Web smart. Which you choose depends largely on the size of your network and how... more/see it nowmuch control you need over that network.

Unmanaged switches are basic plug-and-play switches with no remote configuration, management, or monitoring options, although many can be locally monitored and configured via LED indicators and DIP switches. These inexpensive switches are typically used in small networks or to add temporary workgroups to larger networks.

Managed switches support Simple Network Management Protocol (SNMP) via embedded agents and have a command line interface (CLI) that can be accessed via serial console, Telnet, and Secure Shell. These switches can often be configured and managed as groups. More recent managed switches may also support a Web interface for management through a Web browser.

These high-end switches enable network managers to remotely access a wide range of capabilities including:

  • SNMP monitoring.
  • Enabling and disabling individual ports or port Auto MDI/MDI-X.
  • Port bandwidth and duplex control.
  • IP address management.
  • MAC address filtering.
  • Spanning Tree.
  • Port mirroring to monitor network traffic.
  • Prioritization of ports for quality of service (QoS).
  • VLAN settings.
  • 802.1X network access control.
  • IGMP snooping.
  • Link aggregation or trunking.

  • Managed switches, with their extensive management capabilities, are at home in large enterprise networks where network administrators need to monitor and control a large number of network devices. Managed switches support redundancy protocols for increased network availability.

    Web-smart switches—sometimes called smart switches or Web-managed switches—have become a popular option for mid-sized networks that require management. They offer access to switch management features such as port monitoring, link aggregation, and VPN through a simple Web interface via an embedded Web browser. What these switches generally do not have is SNMP management capabilities or a CLI. Web-smart switches must usually be managed individually rather than in groups.

    Although the management features found in a Web-smart switch are less extensive than those found in a fully managed switch, these switches are becoming smarter with many now offering many of the features of a fully managed switch. Like managed switches, they also support redundancy protocols for increased network availability.


    • Manual... 
    • Gigabit Smart Switch (Eco Fanless) User Manual
      User Manual for the LGB2118A & LGB2124A (Version 2)
    • Manual... 
    • Gigabit Unmanaged Switch, with SFP Uplinks, User Manual
      User Manual for the LGB516A & LGB524A (Version 1)

    Product Data Sheets (pdf)...Gigabit Unmanaged Switches with SFP Uplinks

    Black Box Explains…SFP compatibility.

    Standards for SFP fiber optic media are published in the SFP Multi-Source Agreement, which specifies size, connectors, and signaling for SFPs, with the idea that all SFPs are compatible with... more/see it nowdevices that have appropriate SFP slots. These standards, which also extend to SFP+ and XFP transceivers, enable users to mix and match components from different vendors to meet their own particular requirements.

    However, some major manufacturers, notably Cisco®, HP®, and 3Com®, sell network devices with SFP slots that lock out transceivers from other vendors. Because the price of SFPs—especially Gigabit SFPs and 10GBASE SFP+ and XFP transceivers—can add significantly to the price of a switch, this lock-out scheme raises hardware costs and limits transceiver choices.

    Many vendors don’t advertise that SFP slots on their devices don’t accept standard SFPs from other vendors. This can lead to unpleasant surprises when a device simply refuses to communicate with an SFP.

    Another game that some vendors play is to build devices that accept open-standard SFPs, but refuse to support those devices when SFPs from another vendor are used with them.

    The only way around this “lock-in” practice is to only buy network devices that accept standard SFPs from all vendors and to buy from vendors that support their devices no matter whose SFPs are used with them. Questions? Call our FREE Tech Support at 724-746-5500. collapse

    Black Box Explains...Ethernet hubs vs. Ethernet switches.

    Although hubs and switches look very similar and are connected to the network in much the same way, there is a significant difference in the way they function.

    What is a... more/see it nowhub?
    An Ethernet hub is the basic building block of a twisted-pair (10BASE-T or 100BASE-TX) Ethernet network. Hubs do little more than act as a physical connection. They link PCs and peripherals and enable them to communicate over a network. All data coming into the hub travels to all stations connected to the hub. Because a hub doesn’t use management or addressing, it simply divides the 10- or 100-Mbps bandwidth among users. If two stations are transferring high volumes of data between them, the network performance of all stations on that hub will suffer. Hubs are good choices for small- or home-office networks, particularly if bandwidth concerns are minimal.

    What is a switch?
    An Ethernet switch, on the other hand, provides a central connection in an Ethernet network in which each connected device has its own dedicated link with full bandwidth. Switches divide LAN data into smaller, easier-to-manage segments and send data only to the PCs it needs to reach. They allot a full 10 or 100 Mbps to each user with addressing and management features. As a result, every port on the switch represents a dedicated 10- or 100-Mbps pathway. Because users connected to a switch do not have to share bandwidth, a switch offers relief from the network congestion a shared hub can cause.

    What to consider when selecting an Ethernet hub:
    • Stackability. Select a stackable hub connected with a special cable so you can start with one hub and add others as you need more ports. The entire stack functions as one device.
    • Manageability. Choose an SNMP-manageable hub if you have a large, managed network.

    What to consider when selecting an Ethernet switch:
    • Manageability. Ethernet switches intended for large managed networks feature built-in management, usually SNMP.
    • OSI Layer operation. Most Ethernet switches operate at “Layer 2,” which is for the physical network addresses (MAC addresses). Layer 3 switches use network addresses, and incorporate routing functions to actively calculate the best way to send a packet to its destination. Very advanced Ethernet switches, often known as routing switches, operate on OSI Layer 4 and route network traffic according to the application.
    • Modular construction. A modular switch enables you to populate a chassis with modules of different speeds and media types. Because you can easily change modules, the modular switch is an adaptable solution for large, growing networks.
    • Stackability. Some Ethernet switches can be connected to form a stack of two or more switches that functions as a single network device. This enables you to start with fewer ports and add them as your network grows. collapse

    • Visio Stencil Drawing... 
    • Visio Stencil
      Stencil Drawings
    Results 1-10 of 21 1 2 3 > 


    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Black Box 1-800-316-7107 Black Box Network Services