Categories (x) > Networking > Switches > Commercial/Office Grade > 12- to 18-Port (x)

Results 1-10 of 23 1 2 3 > 
  • Manual... 
  • Gigabit Unmanaged Switch, with SFP Uplinks, User Manual
    User Manual for the LGB516A & LGB524A (Version 1)

Black Box Explains...Layer 2, 3, and 4 switches.

...more/see it now
OSI Layer Physical
7-Application Applicaton Software

LAN-Compatible Software
E-Mail, Diagnostics, Word Processing, Database

Network Applications
6-Presentation Data-
Conversion Utilities
Vendor-Specific Network Shells and Gateway™ Workstation Software
5-Session Network Operating System SPX NetBIOS DECnet™ TCP/IP AppleTalk®
4-Transport Novell® NetWare® IPX™ PC LAN LAN Mgr DECnet PC/TCP® VINES™ NFS TOPS® Apple
3-Network Control
2-Data Link Network E A TR P TR E TR E E E P E P
1-Physical E=Ethernet; TR=Token Ring; A=ARCNET®; P=PhoneNET®

With the rapid development of computer networks over the last decade, high-end switching has become one of the most important functions on a network for moving data efficiently and quickly from one place to another.

Here’s how a switch works: As data passes through the switch, it examines addressing information attached to each data packet. From this information, the switch determines the packet’s destination on the network. It then creates a virtual link to the destination and sends the packet there.

The efficiency and speed of a switch depends on its algorithms, its switching fabric, and its processor. Its complexity is determined by the layer at which the switch operates in the OSI (Open Systems Interconnection) Reference Model (see above).

OSI is a layered network design framework that establishes a standard so that devices from different vendors work together. Network addresses are based on this OSI Model and are hierarchical. The more details that are included, the more specific the address becomes and the easier it is to find.

The Layer at which the switch operates is determined by how much addressing detail the switch reads as data passes through.

Switches can also be considered low end or high end. A low-end switch operates in Layer 2 of the OSI Model and can also operate in a combination of Layers 2 and 3. High-end switches operate in Layer 3, Layer 4, or a combination of the two.

Layer 2 Switches (The Data-Link Layer)

Layer 2 switches operate using physical network addresses. Physical addresses, also known as link-layer, hardware, or MAC-layer addresses, identify individual devices. Most hardware devices are permanently assigned this number during the manufacturing process.

Switches operating at Layer 2 are very fast because they’re just sorting physical addresses, but they usually aren’t very smart—that is, they don’t look at the data packet very closely to learn anything more about where it’s headed.

Layer 3 Switches (The Network Layer)

Layer 3 switches use network or IP addresses that identify locations on the network. They read network addresses more closely than Layer 2 switches—they identify network locations as well as the physical device. A location can be a LAN workstation, a location in a computer’s memory, or even a different packet of data traveling through a network.

Switches operating at Layer 3 are smarter than Layer 2 devices and incorporate routing functions to actively calculate the best way to send a packet to its destination. But although they’re smarter, they may not be as fast if their algorithms, fabric, and processor don’t support high speeds.

Layer 4 Switches (The Transport Layer)

Layer 4 of the OSI Model coordinates communications between systems. Layer 4 switches are capable of identifying which application protocols (HTTP, SNTP, FTP, and so forth) are included with each packet, and they use this information to hand off the packet to the appropriate higher-layer software. Layer 4 switches make packet-forwarding decisions based not only on the MAC address and IP address, but also on the application to which a packet belongs.

Because Layer 4 devices enable you to establish priorities for network traffic based on application, you can assign a high priority to packets belonging to vital in-house applications such as Peoplesoft, with different forwarding rules for low-priority packets such as generic HTTP-based Internet traffic.

Layer 4 switches also provide an effective wire-speed security shield for your network because any company- or industry-specific protocols can be confined to only authorized switched ports or users. This security feature is often reinforced with traffic filtering and forwarding features.


Black Box Explains...Ethernet hubs vs. Ethernet switches.

Although hubs and switches look very similar and are connected to the network in much the same way, there is a significant difference in the way they function.

What is a... more/see it nowhub?
An Ethernet hub is the basic building block of a twisted-pair (10BASE-T or 100BASE-TX) Ethernet network. Hubs do little more than act as a physical connection. They link PCs and peripherals and enable them to communicate over a network. All data coming into the hub travels to all stations connected to the hub. Because a hub doesn’t use management or addressing, it simply divides the 10- or 100-Mbps bandwidth among users. If two stations are transferring high volumes of data between them, the network performance of all stations on that hub will suffer. Hubs are good choices for small- or home-office networks, particularly if bandwidth concerns are minimal.

What is a switch?
An Ethernet switch, on the other hand, provides a central connection in an Ethernet network in which each connected device has its own dedicated link with full bandwidth. Switches divide LAN data into smaller, easier-to-manage segments and send data only to the PCs it needs to reach. They allot a full 10 or 100 Mbps to each user with addressing and management features. As a result, every port on the switch represents a dedicated 10- or 100-Mbps pathway. Because users connected to a switch do not have to share bandwidth, a switch offers relief from the network congestion a shared hub can cause.

What to consider when selecting an Ethernet hub:
• Stackability. Select a stackable hub connected with a special cable so you can start with one hub and add others as you need more ports. The entire stack functions as one device.
• Manageability. Choose an SNMP-manageable hub if you have a large, managed network.

What to consider when selecting an Ethernet switch:
• Manageability. Ethernet switches intended for large managed networks feature built-in management, usually SNMP.
• OSI Layer operation. Most Ethernet switches operate at “Layer 2,” which is for the physical network addresses (MAC addresses). Layer 3 switches use network addresses, and incorporate routing functions to actively calculate the best way to send a packet to its destination. Very advanced Ethernet switches, often known as routing switches, operate on OSI Layer 4 and route network traffic according to the application.
• Modular construction. A modular switch enables you to populate a chassis with modules of different speeds and media types. Because you can easily change modules, the modular switch is an adaptable solution for large, growing networks.
• Stackability. Some Ethernet switches can be connected to form a stack of two or more switches that functions as a single network device. This enables you to start with fewer ports and add them as your network grows. collapse

  • Manual... 
  • 10/100 PSE Web Smart Switch User Manual
    User Manual for 10/100 PSE Web Smart Switch (2)

Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • Converters and Scalers Selector
    PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms

    • Manual... 
    • Unmanaged Gigabit Switch
      (Version 1)
    • Visio Stencil Drawing... 
    • Visio Stencil
      Stencil Drawings

    Black Box Explains...Media converters that are really switches.

    A media converter is a device that converts from one media type to another, for instance, from twisted pair to fiber to take advantage of fiber’s greater range. A traditional... more/see it nowmedia converter is a two-port Layer 1 device that performs a simple conversion of only the physical interface. It’s transparent to data and doesn't “see” or manipulate data in any way.

    An Ethernet switch can also convert one media type to another, but it also creates a separate collision domain for each switch port, so that each packet is routed only to the destination device, rather than around to multiple devices on a network segment. Because switches are “smarter” than traditional media converters, they enable additional features such as multiple ports and copper ports that autosense for speed and duplex.

    Switches are beginning to replace traditional 2-port media converters, leading to some fuzziness in terminology. Small 4- or 6-port Ethernet switches are very commonly called media converters. In fact, anytime you see a “Layer 2” media converter or a media converter with more than two ports, it’s really a small Ethernet switch. collapse

    Results 1-10 of 23 1 2 3 > 


    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Black Box 1-877-877-2269 Black Box Network Services