Loading


Categories (x) > Networking > Media Converters (x)
Content Type (x) > Black Box Explains (x)

Results 21-25 of 25 < 1 2 3 

Black Box Explains...Single-strand fiber WDM.

Traditional fiber optic media converters perform a useful function but don’t really reduce the amount of cable needed to send data on a fiber segment. They still require two strands... more/see it nowof glass to send transmit and receive signals for fiber media communications. Wouldn’t it be better to combine these two logical communication paths within one strand?

That’s exactly what single-strand fiber conversion does. It compresses the transmit and receive wavelengths into one single-mode fiber strand.

The conversion is done with Wave-Division Multiplexing (WDM) technology. WDM technology increases the information-carrying capacity of optical fiber by transmitting two signals simultaneously at different wavelengths on the same fiber. The way it usually works is that one unit transmits at 1310 nm and receives at 1550 nm. The other unit transmits at 1550 nm and receives at 1310 nm. The two wavelengths operate independently and don’t interfere with each other. This bidirectional traffic flow effectively converts a single fiber into a pair of “virtual fibers,” each driven independently at different wavelengths.

Although most implementations of WDM on single-strand fiber offer two channels, four-channel versions are just being introduced, and versions offering as many as 10 channels with Gigabit capacity are on the horizon.

WDM on single-strand fiber is most often used for point-to-point links on a long-distance network. It’s also used to increase network capacity or relieve network congestion. collapse


Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse


Black Box Explains...Why media converters need SNMP.

The number of Ethernet switches and fiber optic segments being added to Ethernet networks keeps increasing. And as long as most Ethernet switches are only available with 10BASE-T and 100BASE-TX... more/see it nowinterfaces, media converters will remain in demand.

Until now, a failure on the network could go unnoticed. Once a failure was detected, it could take a long time to isolate it, especially if a technician had to be sent to the site. But media converters with SNMP eliminate some of the guesswork.

With SNMP, the IS manager can detect a failure, isolate it to a specific port, and determine what hardware is required to repair it. A technician can then be sent directly to the right place to fix faulty hardware or repair a broken cable.

SNMP enables you to set up alarms or traps when a link is down. You can turn features on and off from a central terminal, so there’s no need to leave your desk. You can also monitor power supplies and replace them without interrupting service. SNMP management reduces the time and money it takes to get your network up and running again. The users on your network will notice—and appreciate—the improved service and reliability. collapse


Black Box Explains...DIN rail usage.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...Layer 2, 3, and 4 switches.



...more/see it now
OSI Layer Physical
Component
7-Application Applicaton Software

LAN-Compatible Software
E-Mail, Diagnostics, Word Processing, Database


Network Applications
6-Presentation Data-
Conversion Utilities
Vendor-Specific Network Shells and Gateway™ Workstation Software
5-Session Network Operating System SPX NetBIOS DECnet™ TCP/IP AppleTalk®
4-Transport Novell® NetWare® IPX™ PC LAN LAN Mgr DECnet PC/TCP® VINES™ NFS TOPS® Apple
Share®
3-Network Control
2-Data Link Network E A TR P TR E TR E E E P E P
1-Physical E=Ethernet; TR=Token Ring; A=ARCNET®; P=PhoneNET®

With the rapid development of computer networks over the last decade, high-end switching has become one of the most important functions on a network for moving data efficiently and quickly from one place to another.


Here’s how a switch works: As data passes through the switch, it examines addressing information attached to each data packet. From this information, the switch determines the packet’s destination on the network. It then creates a virtual link to the destination and sends the packet there.


The efficiency and speed of a switch depends on its algorithms, its switching fabric, and its processor. Its complexity is determined by the layer at which the switch operates in the OSI (Open Systems Interconnection) Reference Model (see above).


OSI is a layered network design framework that establishes a standard so that devices from different vendors work together. Network addresses are based on this OSI Model and are hierarchical. The more details that are included, the more specific the address becomes and the easier it is to find.


The Layer at which the switch operates is determined by how much addressing detail the switch reads as data passes through.


Switches can also be considered low end or high end. A low-end switch operates in Layer 2 of the OSI Model and can also operate in a combination of Layers 2 and 3. High-end switches operate in Layer 3, Layer 4, or a combination of the two.


Layer 2 Switches (The Data-Link Layer)

Layer 2 switches operate using physical network addresses. Physical addresses, also known as link-layer, hardware, or MAC-layer addresses, identify individual devices. Most hardware devices are permanently assigned this number during the manufacturing process.


Switches operating at Layer 2 are very fast because they’re just sorting physical addresses, but they usually aren’t very smart—that is, they don’t look at the data packet very closely to learn anything more about where it’s headed.


Layer 3 Switches (The Network Layer)

Layer 3 switches use network or IP addresses that identify locations on the network. They read network addresses more closely than Layer 2 switches—they identify network locations as well as the physical device. A location can be a LAN workstation, a location in a computer’s memory, or even a different packet of data traveling through a network.


Switches operating at Layer 3 are smarter than Layer 2 devices and incorporate routing functions to actively calculate the best way to send a packet to its destination. But although they’re smarter, they may not be as fast if their algorithms, fabric, and processor don’t support high speeds.


Layer 4 Switches (The Transport Layer)

Layer 4 of the OSI Model coordinates communications between systems. Layer 4 switches are capable of identifying which application protocols (HTTP, SNTP, FTP, and so forth) are included with each packet, and they use this information to hand off the packet to the appropriate higher-layer software. Layer 4 switches make packet-forwarding decisions based not only on the MAC address and IP address, but also on the application to which a packet belongs.


Because Layer 4 devices enable you to establish priorities for network traffic based on application, you can assign a high priority to packets belonging to vital in-house applications such as Peoplesoft, with different forwarding rules for low-priority packets such as generic HTTP-based Internet traffic.


Layer 4 switches also provide an effective wire-speed security shield for your network because any company- or industry-specific protocols can be confined to only authorized switched ports or users. This security feature is often reinforced with traffic filtering and forwarding features.

collapse

Results 21-25 of 25 < 1 2 3 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services