Loading


Categories (x) > Networking > Media Converters > PC Adapters (x)

Results 1-10 of 11 1 2 > 
  • Manual... 
  • PCI Fiber Adapters, SC
    Installation and User Guide (Jul-05)
 
  • Manual... 
  • PCI Fiber Adapter, 1000BASE-SX, 64-/32-Bit Manual
    Manual for LH1660C-SC, and LH1660C-LC (Version 1)
 
  • Drivers... 
  • LH1690C-SC Drivers
    Drivers for the LH1690C-SC.
 
  • Drivers... 
  • LH1360C-ST Drivers
    Drivers for the LH1360C-ST
 

Black Box Explains...SFP, SFP+, and XFP transceivers.

SFP, SFP+, and XFP are all terms for a type of transceiver that plugs into a special port on a switch or other network device to convert the port to... more/see it nowa copper or fiber interface. These compact transceivers replace the older, bulkier GBIC interface. Although these devices are available in copper, their most common use is to add fiber ports. Fiber options include multimode and single-mode fiber in a variety of wavelengths covering distances of up to 120 kilometers (about 75 miles), as well as WDM fiber, which uses two separate wavelengths to both send and receive data on a single fiber strand.

SFPs support speeds up to 4.25 Gbps and are generally used for Fast Ethernet or Gigabit Ethernet applications. The expanded SFP standard, SFP+, supports speeds of 10 Gbps or higher over fiber. XFP is a separate standard that also supports 10-Gbps speeds. The primary difference between SFP+ and the slightly older XFP standard is that SFP+ moves the chip for clock and data recovery into a line card on the host device. This makes an SFP+ smaller than an XFP, enabling greater port density.

Because all these compact transcievers are hot-swappable, there’s no need to shut down a switch to swap out a module—it’s easy to change interfaces on the fly for upgrades and maintenance.

Another characteristic shared by this group of transcievers is that they’re OSI Layer 1 devices—they’re transparent to data and do not examine or alter data in any way. Although they’re primarily used with Ethernet, they’re also compatible with uncommon or legacy standards such as Fibre Channel, ATM, SONET, or Token Ring.

Formats for SFP, SFP+, and XFP transceivers have been standardized by multisource agreements (MSAs) between manufacturers, so physical dimensions, connectors, and signaling are consistent and interchangeable. Be aware though that some major manufacturers, notably Cisco, sell network devices with slots that lock out transceivers from other vendors. collapse


Black Box Explains…Fiber Ethernet adapters vs. media converters.

When running fiber to the desktop, you have two choices for making the connection from the fiber to a PC: a fiber Ethernet adapter or a media converter like our... more/see it nowMicro Mini Media Converter.

Fiber Ethernet adapters:

  • Less expensive.
  • Create no desktop clutter, but the PC must be opened.
  • Powered from the PC—require no separate power provision.
  • Require an open PCI or PCI-E slot in the PC.
  • Can create driver issues that must be resolved.
  • May be required in high-security installations that require a 100% fiber link to the desktop.

  • Media converters:
  • More expensive.
  • No need to open the PC but can create a cluttered look.
  • Powered from an AC outlet or a PC’s USB port.
  • Don’t require an open slot in the PC.
  • Plug-and-play installation—totally transparent to data, so there are no driver problems; install in seconds.
  • The short copper link from media converter to PC may be a security vulnerability.
  • collapse


    Product Data Sheets (pdf)...PCI-E Network Adapters

    • Quick Start Guide... 
    • PCI-E Network Adapter (10-GbE) QSG
      Quick Start Guide for the LH3000 and LH3001 (Version 1)
     
    • Drivers... 
    • LH1660C-SC Drivers
      Drivers for the LH1660C-SC.
     

    Black Box Explains...Gigabit Ethernet.

    As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

    Compatibility
    Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

    The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

    One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

    Affordability and adaptability
    You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

    Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

    When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

    1000BASE-X
    1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

    1000BASE-SX
    The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

    1000BASE-LX
    The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

    1000BASE-CX
    The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

    Gigabit over CAT5—1000BASE-TX
    The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

    Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse

    Results 1-10 of 11 1 2 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services