Loading


Categories (x) > Networking > Industrial (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 17 1 2 > 

Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • Converters and Scalers Selector
    PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms
    collapse


    Black Box Explains…Media converters that also work as switches.

    Media converters transparently convert the incoming electrical signal from one cable type and then transmit it over another type—thick coax to Thin, UTP to fiber, and so on. Traditionally, media... more/see it nowconverters were purely Layer 1 devices that only converted electrical signals and physical media and didn’t do anything to the data coming through the link.

    Today’s media converters, however, are often more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services and route Ethernet packets based on MAC address. These media converters are often called media converter switches, switching media converters, or Layer 2 media converters. They enable you to have multiple connections rather than just one simple in-and-out connection. And because they’re switches, they increase network efficiency.

    Media converters are often used to connect newer 100-Mbps, Gigabit Ethernet, or ATM equipment to existing networks, which are generally 10BASE-T, 100BASE-T, or a mixture of both. They can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference.

    Rent an apartment…
    Media converters are available in standalone models that convert between two different media types and in chassis-based models that house many media converters in a a single chassis.

    Standalone models convert between two media. But, like a small apartment, they can be outgrown.

    Consider your current and future applications before selecting a media converter. A good way to anticipate future network requirements is to choose media converters that work as standalone devices but can be rackmounted if needed later.

    …or buy a house.
    Chassis-based or modular media converter systems are normally rackmountable and have slots to house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and they enable you to mix different media types such as 10BASE-T, 100BASE-TX, 100BASE-FX, ATM, and Gigabit modules. Although enterprise-level chassis-based systems generally have modules that can only be used in a chassis, many midrange systems feature modules that can be used individually or in a chassis. collapse


    Black Box Explains...Media converters that are really switches.

    A media converter is a device that converts from one media type to another, for instance, from twisted pair to fiber to take advantage of fiber’s greater range. A traditional... more/see it nowmedia converter is a two-port Layer 1 device that performs a simple conversion of only the physical interface. It’s transparent to data and doesn't “see” or manipulate data in any way.

    An Ethernet switch can also convert one media type to another, but it also creates a separate collision domain for each switch port, so that each packet is routed only to the destination device, rather than around to multiple devices on a network segment. Because switches are “smarter” than traditional media converters, they enable additional features such as multiple ports and copper ports that autosense for speed and duplex.

    Switches are beginning to replace traditional 2-port media converters, leading to some fuzziness in terminology. Small 4- or 6-port Ethernet switches are very commonly called media converters. In fact, anytime you see a “Layer 2” media converter or a media converter with more than two ports, it’s really a small Ethernet switch. collapse


    Black Box Explains...Single-strand fiber WDM.

    Traditional fiber optic media converters perform a useful function but don’t really reduce the amount of cable needed to send data on a fiber segment. They still require two strands... more/see it nowof glass to send transmit and receive signals for fiber media communications. Wouldn’t it be better to combine these two logical communication paths within one strand?

    That’s exactly what single-strand fiber conversion does. It compresses the transmit and receive wavelengths into one single-mode fiber strand.

    The conversion is done with Wave-Division Multiplexing (WDM) technology. WDM technology increases the information-carrying capacity of optical fiber by transmitting two signals simultaneously at different wavelengths on the same fiber. The way it usually works is that one unit transmits at 1310 nm and receives at 1550 nm. The other unit transmits at 1550 nm and receives at 1310 nm. The two wavelengths operate independently and don’t interfere with each other. This bidirectional traffic flow effectively converts a single fiber into a pair of “virtual fibers,” each driven independently at different wavelengths.

    Although most implementations of WDM on single-strand fiber offer two channels, four-channel versions are just being introduced, and versions offering as many as 10 channels with Gigabit capacity are on the horizon.

    WDM on single-strand fiber is most often used for point-to-point links on a long-distance network. It’s also used to increase network capacity or relieve network congestion. collapse


    Black Box Explains...vDSL.

    VDSL (Very High Bit-Rate Digital Subscriber Line or Very High-Speed Digital Subscriber Line) is a “last-mile” broadband solution for both businesses and homes, providing economical, high-speed connections to fiber optic... more/see it nowbackbones.

    VDSL enables the simultaneous transmission of voice, data, and video on existing voice-grade copper wires. Depending on the intended applications, you can set VDSL to run symmetrically or asymmetrically. VDSL’s high bandwidth allows for applications such as high-definition television, video-on-demand (VOD), high-quality videoconferencing, medical imaging, fast Internet access, and regular voice telephone services—all over a single voice-grade twisted pair. The actual VDSL distances you achieve vary based on line rate, gauge and type of wire, and noise/crosstalk environment. collapse


    SHDSL, VDSL, VDSL2, ADSL, and SDSL.

    xDSL, a term that encompasses the broad range of digital subscriber line (DSL) services, offers a low-cost, high-speed data transport option for both individuals and businesses, particularly in areas without... more/see it nowaccess to cable Internet.

    xDSL provides data transmission over copper lines, using the local loop, the existing outside-plant telephone cable network that runs right to your home or office. DSL technology is relatively cheap and reliable.

    SHDSL can be used effectively in enterprise LAN applications. When interconnecting sites on a corporate campus, buildings and network devices often lie beyond the reach of a standard Ethernet segment. Now you can use existing copper network infrastructure to connect remote LANS across longer distances and at higher speeds than previously thought possible.

    There are various forms of DSL technologies, all of which face distance issues. The quality of the signals goes down with increasing distance. The most common will be examined here, including SHDSL, ADSL, and SDSL.

    SHDSL (also known as G.SHDSL) (Single-Pair, High-Speed Digital Subscriber Line) transmits data at much higher speeds than older versions of DSL. It enables faster transmission and connections to the Internet over regular copper telephone lines than traditional voice modems can provide. Support of symmetrical data rates makes SHDSL a popular choice for businesses for PBXs, private networks, web hosting, and other services.

    Ratified as a standard in 2001, SHDSL combines ADSL and SDSL features for communications over two or four (multiplexed) copper wires. SHDSL provides symmetrical upstream and downstream transmission with rates ranging from 192 kbps to 2.3 Mbps. As a departure from older DSL services designed to provide higher downstream speeds, SHDSL specified higher upstream rates, too. Higher transmission rates of 384 kbps to 4.6 Mbps can be achieved using two to four copper pairs. The distance varies according to the loop rate and noise conditions.

    For higher-bandwidth symmetric links, newer G.SHDSL devices for 4-wire applications support 10-Mbps rates at distances up to 1.3 miles (2 km). Equipment for 2-wire deployments can transmit up to 5.7 Mbps at the same distance.

    SHDSL (G.SHDSL) is the first DSL standard to be developed from the ground up and to be approved by the International Telecommunication Union (ITU) as a standard for symmetrical digital subscriber lines. It incorporates features of other DSL technologies, such as ADSL and SDS, and is specified in the ITU recommendation G.991.2.

    Also approved in 2001, VDSL (Very High Bitrate DSL) as a DSL service allows for downstream/upstream rates up to 52 Mbps/16 Mbps. Extenders for local networks boast 100-Mbps/60-Mbps speeds when communicating at distances up to 500 feet (152.4 m) over a single voice-grade twisted pair. As a broadband solution, VDSL enables the simultaneous transmission of voice, data, and video, including HDTV, video on demand, and high-quality videoconferencing. Depending on the application, you can set VDSL to run symmetrically or asymmetrically.

    VDSL2 (Very High Bitrate DSL 2), standardized in 2006, provides a higher bandwidth (up to 30 MHz) and higher symmetrical speeds than VDSL, enabling its use for Triple Play services (data, video, voice) at longer distances. While VDSL2 supports upstream/downstream rates similar to VDSL, at longer distances, the speeds don’t fall off as much as those transmitted with ordinary VDSL equipment.

    ADSL (Asymmetric DSL) provides transmission speeds ranging from downstream/upstream rates of 9 Mbps/640 kbps over a relatively short distance to 1.544 Mbps/16 kbps as far away as 18,000 feet. The former speeds are more suited to a business, the latter more to the computing needs of a residential customer.

    More bandwidth is usually required for downstream transmissions, such as receiving data from a host computer or downloading multimedia files. ADSL’s asymmetrical nature provides more than sufficient bandwidth for these applications.

    The lopsided nature of ADSL is what makes it most likely to be used for high-speed Internet access. And the various speed/distance options available within this range are one more point in ADSL’s favor. Like most DSL services standardized by ANSI as T1.413, ADSL enables you to lease and pay for only the bandwidth you need.

    SDSL (Symmetric DSL) represents the two-wire version of HDSL—which is actually symmetric DSL, albeit a four-wire version. SDSL is also known within ANSI as HDSL2.

    Essentially offering the same capabilities as HDSL, SDSL offers T1 rates (1.544 Mbps) at ranges up to 10,000 feet and is primarily designed for business applications.

    collapse


    Black Box Explains...PoE phantom power.

    10BASE-T and 100BASE-TX Ethernet use only two pairs of wire in 4-pair CAT5/CAT5e/CAT6 cable, leaving the other two pairs free to transmit power for Power over Ethernet (PoE) applications. However,... more/see it nowGigabit Ethernet or 1000BASE-T uses all four pairs of wires, leaving no pairs free for power. So how can PoE work over Gigabit Ethernet?

    The answer is through the use of phantom power—power sent over the same wire pairs used for data. When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

    10- and 100-Mbps PoE may also use phantom power. The 802.3af PoE standard for use with 10BASE-T and 100BASE-TX defines two methods of power transmission. In one method, called Alternative A, power and data are sent over the same pair. In the other method, called Alternative B, two wire pairs are used to transmit data, and the remaining two pairs are used for power. That there are two different PoE power-transmission schemes isn’t obvious to the casual user because PoE Powered Devices (PDs) are made to accept power in either format. collapse


    Black Box Explains...DIN rails.

    A DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails.... more/see it nowThese devices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

    Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

    DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

    A standard DIN rail is 35-mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


    Black Box Explains...SFP, SFP+, and XFP transceivers.

    SFP, SFP+, and XFP are all terms for a type of transceiver that plugs into a special port on a switch or other network device to convert the port to... more/see it nowa copper or fiber interface. These compact transceivers replace the older, bulkier GBIC interface. Although these devices are available in copper, their most common use is to add fiber ports. Fiber options include multimode and single-mode fiber in a variety of wavelengths covering distances of up to 120 kilometers (about 75 miles), as well as WDM fiber, which uses two separate wavelengths to both send and receive data on a single fiber strand.

    SFPs support speeds up to 4.25 Gbps and are generally used for Fast Ethernet or Gigabit Ethernet applications. The expanded SFP standard, SFP+, supports speeds of 10 Gbps or higher over fiber. XFP is a separate standard that also supports 10-Gbps speeds. The primary difference between SFP+ and the slightly older XFP standard is that SFP+ moves the chip for clock and data recovery into a line card on the host device. This makes an SFP+ smaller than an XFP, enabling greater port density.

    Because all these compact transcievers are hot-swappable, there’s no need to shut down a switch to swap out a module—it’s easy to change interfaces on the fly for upgrades and maintenance.

    Another characteristic shared by this group of transcievers is that they’re OSI Layer 1 devices—they’re transparent to data and do not examine or alter data in any way. Although they’re primarily used with Ethernet, they’re also compatible with uncommon or legacy standards such as Fibre Channel, ATM, SONET, or Token Ring.

    Formats for SFP, SFP+, and XFP transceivers have been standardized by multisource agreements (MSAs) between manufacturers, so physical dimensions, connectors, and signaling are consistent and interchangeable. Be aware though that some major manufacturers, notably Cisco, sell network devices with slots that lock out transceivers from other vendors. collapse


    Black Box Explains...Fiber.


    Fiber versus copper.

    When planning a new or upgraded cabling infrastructure, you have two basic choices: fiber or copper. Both offer superior data transmission. The decision on which one... more/see it nowto use may be difficult. It will often depend on your current network, your future networking needs, and your particular application, including bandwidth, distances, environment, cost, and more. In some cases, copper may be a better choice; in other situations, fiber offers advantages.


    Although copper cable is currently more popular and much more predominant in structured cabling systems and networks, fiber is quickly gaining fans.


    Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. Fiber optic cable is favored for applications that need high bandwidth, long distances, and complete immunity to electrical interference. It’s ideal for high data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances. A common application for fiber optic cable is as a network backbone, where huge amounts of data are transmitted. To help you decide if fiber is right for your new network or if you want to migrate to fiber, take a look at the following:



    The advantages of fiber.

    Greater bandwidth-Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase. Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber, and many CATV companies are converting to fiber.


    Low attenuation and greater distance-Because the fiber optic signal is made of light, very little signal loss occurs during transmission so data can move at higher speeds and greater distances. Fiber does not have the 100-meter (304.8-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters to 40 kilometers, depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.


    Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.


    Security-Your data is safe with fiber cable. It does not radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the security of your fiber system, you’ll know it.


    Immunity and reliability-Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The fiber is made of glass, which is an insulator, so no electric current can flow through. It is immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper is and can be submerged in water.


    Design-Fiber is lightweight, thin, and more durable than copper cable. And, contrary to what you might think, fiber optic cable has pulling specifications that are up to ten times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper is, advancements in connectors are making temination easier. In addition, fiber is actually easier to test than copper cable.


    Migration-The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.


    Standards-New TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). A recent addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet standard.


    Costs-The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.


    Multimode or single-mode, duplex or simplex?

    Multimode-Multimode fiber optic cable can be used for most general fiber applications. Use multimode fiber for bringing fiber to the desktop, for adding segments to your existing network, or in smaller applications such as alarm systems. Multimode cable comes with two different core sizes: 50 micron or 62.5 micron.


    Single-mode-Single-mode is used over distances longer than a few miles. Telcos use it for connections between switching offices. Single-mode cable features an 8.5-micron glass core.


    Duplex-Use duplex multimode or single-mode fiber optic cable for applications that require simultaneous, bidirectional data transfer. Workstations, fiber switches and servers, fiber modems, and similar hardware require duplex cable. Duplex is available in single- and multimode.


    Simplex-Because simplex fiber optic cable consists of only one fiber link, you should use it for applications that only require one-way data transfer. For instance, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location. Simplex fiber comes in single- and multimode types.


    50- vs. 62.5-micron cable.

    Although 50-micron fiber cable features a smaller core, which is the light-carrying portion of the fiber, both 62.5- and 50-micron cable feature the same glass cladding diameter of 125 microns. You can use both in the same types of networks, although 50-micron cable is recommended for premise applications: backbone, horizontal, and intrabuilding connections, and should be considered especially for any new construction and installations. And both can use either LED or laser light sources.


    The big difference between 50-micron and 62.5-micron cable is in bandwidth-50-micron cable features three times the bandwidth of standard 62.5-micron cable, particularly at 850 nm. The 850-nm wavelength is becoming more important as lasers are being used more frequently as a light source.


    Other differences are distance and speed. 50-micron cable provides longer link lengths and/or higher speeds in the 850-nm wavelength. See the table below.




    The ferrules: ceramic or composite?

    As a general rule, use ceramic ferrules for critical network connections such as backbone cables or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrules are more precisely molded and fit closer to the fiber, which gives the fiber optic cables a lower optical loss.


    Use composite ferrules for connections that are less critical to the network’s overall operation and less frequently changed. Like their ceramic counterparts, composite ferrules are characterized by low loss, good quality, and a long life. However, they are not as precisely molded and slightly easier to damage, so they aren’t as well-suited for critical connections.


    Testing and certifying fiber optic cable.

    If you’re accustomed to certifying copper cable, you’ll be pleasantly surprised at how easy it is to certify fiber optic cable because it’s immune to electrical interference. You only need to check a few measurements.

    Attenuation (or decibel loss)-Measured in decibels/kilometer (dB/km), this is the decrease of signal strength as it travels through the fiber cable. Generally, attenuation problems are more common on multimode fiber optic cables.

    Return loss-This is the amount of light reflected from the far end of the cable back to the source. The lower the number, the better. For example, a reading of -60 decibels is better than -20 decibels. Like attenuation, return loss is usually greater with multimode cable.

    Graded refractive index-This measures how the light is sent down the fiber. This is commonly measured at wavelengths of 850 and 1300 nanometers. Compared to other operating frequencies, these two ranges yield the lowest intrinsic power loss. (NOTE: This is valid for multimode fiber only.)

    Propagation delay-This is the time it takes a signal to travel from one point to another over a transmission channel.

    Optical time-domain reflectometry (OTDR)-This enables you to isolate cable faults by transmitting high-frequency pulses onto a cable and examining their reflections along the cable. With OTDR, you can also determine the length of a fiber optic cable because the OTDR value includes the distance the optic signal travels.


    There are many fiber optic testers on the market today. Basic fiber optic testers function by shining a light down one end of the cable. At the other end, there’s a receiver calibrated to the strength of the light source. With this test, you can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget. If the measured loss is less than the number calculated by your loss budget, your installation is good.


    Newer fiber optic testers have a broad range of capabilities. They can test both 850- and 1300-nanometer signals at the same time and can even check your cable for compliance with specific standards.


    Fiber precautions.

    A few properties particular to fiber optic cable can cause problems if you aren’t careful during installation.

    Intrinsic power loss-As the optic signal travels through the fiber core, the signal inevitably loses some speed through absorption, reflection, and scattering. This problem is easy to manage by making sure your splices are good and your connections are clean.

    Microbending-Microbends are minute deviations in fiber caused by excessive bends, pinches, and kinks. Using cable with reinforcing fibers and other special manufacturing techniques minimizes this problem.

    Connector loss-Connector loss occurs when two fiber segments are misaligned. This problem is commonly caused by poor splicing. Scratches and dirt introduced during the splicing process can also cause connector loss.

    Coupling loss-Similar to connector loss, coupling loss results in reduced signal power and is from poorly terminated connector couplings.


    Remember to be careful and use common sense when installing fiber cable. Use clean components. Keep dirt and dust to a minimum. Don’t pull the cable excessively or bend it too sharply around any corners. That way, your fiber optic installation can serve you well for many years.

    collapse

    Results 1-10 of 17 1 2 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-877-877-2269 Black Box Network Services