Loading



Results 1-10 of 2448 1 2 3 4 5 > >> 

Black Box Explains... Pulling eyes and fiber cable.

Fiber optic cable can be damaged if pulled improperly. Broken or cracked fiber, for example, can result from pulling on the fiber core or jacket instead of the strength member.... more/see it nowAnd too much tension or stress on the jacket, as well as too tight of a bend radius, can damage the fiber core. If the cable’s core is harmed, the damage can be difficult to detect.

Once the cable is pulled successfully, damage can still occur during the termination phase. Field termination can be difficult and is often done incorrectly, resulting in poor transmission. One way to eliminate field termination is to pull preterminated cable. But this can damage the cable as well because the connectors can be knocked off during the pulling process. The terminated cable may also be too bulky to fit through ducts easily. To help solve all these problems, use preterminated fiber optic cable with a pulling eye. This works best for runs up to 2000 feet (609.6 m).

The pulling eye contains a connector and a flexible, multiweave mesh-fabric gripping tube. The latched connector is attached internally to the Kevlar®, which absorbs most of the pulling tension. Additionally, the pulling eye’s mesh grips the jacket over a wide surface area, distributing any remaining pulling tension and renders it harmless. The end of the gripping tube features one of three different types of pulling eyes: swivel, flexible, or breakaway.

Swivel eyes enable the cable to go around bends without getting tangled. They also prevent twists in the pull from being transferred to the cable. A flexible eye follows the line of the pull around corners and bends, but it’s less rigid. A breakaway eye offers a swivel function but breaks if the tension is too great. We recommend using the swivel-type pulling eye.

A pulling eye enables all the fibers to be preterminated to ensure better performance. The terminated fibers are staggered inside the gripping tube to minimize the diameter of the cable. This enables the cable to be pulled through the conduit more easily. collapse


Black Box Explains... Baseband, broadband, and carrierband transmissions.

Depending on the environment and how the electrical signal is sent over the cable, coax can be used for three types of transmissions.

Baseband transmissions use the entire communication channel capacity... more/see it nowto transmit a single data signal. Many LANs employ Thin coax for baseband signaling.

Broadband transmissions use different frequencies to carry several analog signals simultaneously. Each signal can for be a different type of information—data, voice, even video. Broadband transmissions over coax employ either one or two cables. With single-cable coax wiring, frequencies are split into individual channels for each station; some channels are allocated for bidirectional communication. Dual-cable coax wiring uses one cable for sending and one cable for receiving data, each with multiple channels. Broadband transmissions are ideal for long distances. Thick coax is often used for broadband transmissions.

Unlike broadband transmissions, carrierband transmissions can only use one information channel. Carrierband is best suited for the horizontal subsystems (subnetworks) in industrial settings. Many LANs use Thin coax for carrierband signaling. collapse


Black Box Explains...Shielded vs. unshielded cable.

The environment determines whether cable should be shielded or unshielded.

Shielding is the sheath surrounding and protecting the cable wires from electromagnetic leakage and interference. Sources of this electromagnetic activity... more/see it now(EMI)—commonly referred to as noise—include elevator motors, fluorescent lights, generators, air conditioners, and photocopiers. To protect data in areas with high EMI, choose a shielded cable.

Foil is the most basic cable shield, but a copper-braid shield provides more protection. Shielding also protects cables from rodent damage. Use a foil-shielded cable in busy office or retail environments. For industrial environments, you might want to choose a copper-braid shield.

For quiet office environments, choose unshielded cable. collapse


Black Box Explains...USB 2.0 and USB OTG.

The Universal Serial Bus (USB) hardware (plug-and-play) standard makes connecting peripherals to your computer easy.

USB 1.1, introduced in 1995, is the original USB standard. It has two data rates:... more/see it now12 Mbps for devices such as disk drives that need high-speed throughput and 1.5 Mbps for devices such as joysticks that need much lower bandwidth.

In 2002, a newer specification, USB 2.0, or Hi-Speed USB 2.0, gained wide acceptance in the industry. This version is both forward- and backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1!

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as CD/DVD burners, scanners, digital cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously. USB 2.0 also supports Windows® XP through a Windows update.

An even newer USB standard, USB On-The-Go (OTG), is also in development. USB OTG enables devices other than a PC to act as a host. It enables portable equipment—such as PDAs, cell phones, digital cameras, and digital music players—to connect to each other without the need for a PC host.

USB 2.0 specifies three types of connectors: the A connector, the B connector, and the Mini B connector. A fourth type of connector, the Mini A (used for smaller peripherals such as mobile phones), was developed as part of the USB OTG specification. collapse


Black Box Explains...NEMA 12 certification.

The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact... more/see it nowwith the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing non-corrosive liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.

Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible. collapse


Black Box Explains...UARTs at a glance.

Universal Asynchronous Receiver/Transmitters (UARTs) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help applications overcome... more/see it nowthe factors that can hinder system performance, providing maximum throughput to high-performance peripherals without slowing down CPUs.

Early UARTs such as 8250 and 16450 did not include buffering (RAM or memory). With the advent of higher-speed devices, the need for UARTs that could handle more data became critical. The first buffered UART was the 16550, which incorporates a 16-byte First In First Out (FIFO) buffer and provides greater throughput than its predecessors.

Manufacturers have been developing enhanced UARTs that continue to increase performance standards. These faster chips provide improvements such as larger buffers and increased speeds. Here are the rates of today’s common UARTs:

UART FIFO Buffer Rate Supported
16550 16-byte 115.2 kbps
16554 16-byte 115.2 kbps
16650 32-byte 460.8 kbps (burst rate)
16654 64-byte 460.8 kbps (burst rate)
16750 64-byte 460.8 kbps (burst rate)
16850 128-byte 460.8 kbps (sustained rate)
16854 128-byte 460.8 kbps (sustained rate) collapse


Black Box Explains... Standard and ThinNet Ethernet cabling.

The Ethernet standard supports 10-, 100-, and 1000-Mbps speeds. It supports both half- and full-duplex configurations over twisted-pair and fiber cable, as well as half-duplex over coax cable.

However, the Thick... more/see it nowand ThinNet Ethernet standards support only 10-Mbps speeds.

Standard (Thick) Ethernet (10BASE5)
• Uses “Thick” coax cable with N-type connectors for a backbone and a transceiver cable with 15-pin connectors from the transceiver to the network interface card.
• The maximum number of segments is five, but only three can have computers attached. The others are for network extension.
• The maximum length of one segment is 500 meters.
• The maximum total length of all segments is 2500 meters.
• The maximum length of one transceiver cable is 50 meters.
• The minimum distance between transceivers is 2.5 meters.
• No more than 100 transceiver connections per segment are allowed. A repeater counts as a station for both segments.

Thin Ethernet (ThinNet) (10BASE2)
• Uses “Thin” coax cable (RG-58A/U or RG-58C/U).
• The maximum length of one segment is 185 meters.
• The maximum number of segments is five.
• The maximum total length of all segments is 925 meters.
• The minimum distance between T-connectors is 0.5 meters.
• No more than 30 connections per segment are allowed.
• T-connectors must be plugged directly into each device. collapse


Black Box Explains...Connecting peripherals with USB.

Before Universal Serial Bus (USB), adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect... more/see it nowdigital joysticks, scanners, speakers, cameras, or PC telephones to your computer instantly. With USB, anyone can make the connection because everything is automatic!

Because USB connections are hot-swappable, you can attach or remove peripherals without shutting down your computer. Also, USB hubs have additional ports that enable you to daisychain multiple devices together. More than 800 leading PC, peripheral, and software manufacturers support USB. collapse


Black Box Explains... Matrix video switches.

Matrix switches enable computers to mix and match the output of multiple PCs on multiple video monitors.

For instance, if your operation has four PCs and you want to display the... more/see it nowvideo on one monitor to the other three monitors, a matrix video switch is what you need to handle the job. Use matrix switches for:
• Trade shows—Set up a wall of video to wow the senses of attendees.
• Transportation schedules—Provide real-time updates of flights or deliveries on multiple screens.
• Training demonstrations—Control each screen’s video to focus everyone’s attention on what’s important. collapse

  • Pdf Drawing... 
  • CAT3 Jack (Office White) PDF Drawing
    PDF Drawing for the FMT369-R2 and FMT364-R2-25PAK (Version 1)
 
Results 1-10 of 2448 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services