Loading


Categories (x) > KVM (x)
Content Type (x) > Black Box Explains (x)

Results 11-20 of 27 < 1 2 3 > 

Black Box Explains...The 13W3 connector.

The 13W3 connector, also called a 13C3 or DB13W3 connector, is an unusual connector that combines a 10-pin D-shell with three analog video conductors. It supports very-high-resolution analog video signals... more/see it nowand has been used by Sun Microsystems®, SGI, NeXt, Intergraph, and other manufacturers. Although 13W3 connectors from different manufacturers look the same, they may be pinned differently.

Pinning for a standard Sun® 13W3 connector:
A1: Red
A2: Green/Gray
A3: Blue
1: Ground*
2: Vertical Sync*
3: Sense 2
4: Sense Ground
5: Composite Sync 
6: Horizontal Sync*
7: Ground*
8: Sense 1
9: Sense 0
10: Composite Ground

* Considered obsolete; may not be connected. collapse


Black Box Explains... Coax cables for ServSwitch products.

What’s the difference between standard and coax cables for ServSwitch™ products? Performance! Coax cables are made with premium-gauge wire, so they can be made in longer lengths. That means you... more/see it nowcan move your workstation up to 100 feet (30.4 m) from your ServSwitch. Plus coax cables have even more shielding to maintain the signal quality and strength you need. If you require high-resolution video or long distances, this is the cable you need! collapse


Black Box Explains...Category wiring standards

The ABCs of standards
There are two primary organizations dedicated to developing and setting structured cabling standards. In North America, standards are issued by the Telecommunications Industry Association (TIA),... more/see it nowwhich is accredited by the American National Standards Institute (ANSI). The TIA was formed in April 1988 after a merger with the Electronics Industry Association (EIA). That’s why its standards are commonly known as ANSI/TIA/EIA, TIA/EIA, or TIA.

Globally, the organizations that issue standards are the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO). Standards are often listed as ISO/IEC. Other organizations include the Canadian Standards Association (CSA), CENELEC (European Committee for Electrotechnical Standardizations), and the Japanese Standards Association (JSA/JSI).

The committees of all these organizations work together and the performance requirements of the standards are very similar. But there is some confusion in terminology.

The TIA cabling components (cables, connecting hardware, and patch cords) are labeled with a ”category.” These components together form a permanent link or channel that is also called a ”category.” The ISO/IEC defines the link and channel requirements with a ”class” designation. But the components are called a ”category.”

The standards
Category 5 (CAT5) —ratified in 1991. It is no longer recognized for use in networking.

Category 5e (CAT5e), ISO/IEC 11801 Class D, ratified in 1999, is designed to support full-duplex, 4-pair transmission in 100-MHz applications. The CAT5e standard introduced the measurement for PS-NEXT, EL-FEXT, and PS-ELFEXT. CAT5e is no longer recognized for new installations. It is commonly used for 1-GbE installations.

Category 6 (CAT6) – Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TIA TSB-155-A and ISO/IEC 24750 qualifies 10-GbE over CAT6 over channels of 121 to 180 feet (37 to 55 meters) and requires it to be 100% tested, which is extremely time consuming. To mitigate ANEXT in CAT6, it is recommended that the cables be unbundled, that the space between cables be increased, and that non-adjacent patch panel ports be used. If CAT6 F/UTP cable is used, mitigation is not necessary and the length limits do not apply. CAT6 is not recommended for new 10-GbE installations.

Augmented Category 6 (CAT6A) –Class Ea was ratified in February 2008. This standard calls for 10-Gigabit Ethernet data transmission over a 4-pair copper cabling system up to 100 meters. CAT6A extends CAT6 electrical specifications from 250 MHz to 500 MHz. It introduces the ANEXT requirement. It also replaces the term Equal Level Far-End Crosstalk (ELFEXT) with Attenuation to Crosstalk Ratio, Far-End (ACRF) to mesh with ISO terminology. CAT6A provides improved insertion loss over CAT6. It is a good choice for noisy environments with lots of EMI. CAT6A is also well-suited for use with PoE+.

CAT6A UTP cable is significantly larger than CAT6 cable. It features larger conductors, usually 22 AWG, and is designed with more space between the pairs to minimize ANEXT. The outside diameter of CAT6A cable averages 0.29"–0.35" compared to 0.21"–0.24" for CAT6 cable. This reduces the number of cables you can fit in a conduit. At a 40% fill ratio, you can run three CAT6A cables in a 3/4" conduit vs. five CAT6 cables.

CAT6A UTP vs. F/UTP. Although shielded cable has the reputation of being bigger, bulkier, and more difficult to handle and install than unshielded cable, this is not the case with CAT6A F/UTP cable. It is actually easier to handle, requires less space to maintain proper bend radius, and uses smaller conduits, cable trays, and pathways. CAT6A UTP has a larger outside diameter than CAT6A F/UTP cable. This creates a great difference in the fill rate of cabling pathways. An increase in the outside diameter of 0.1", from 0.25" to 0.35" for example, represents a 21% increase in fill volume. In general, CAT6A F/UTP provides a minimum of 35% more fill capacity than CAT6A UTP. In addition, innovations in connector technology have made terminating CAT6A F/UTP actually easier than terminating bulkier CAT6A UTP.

Category 7 (CAT7) –Class F was published in 2002 by the ISO/IEC. It is not a TIA recognized standard and TIA plans to skip over it.

Category 7 specifies minimum performance standards for fully shielded cable (individually shielded pairs surrounded by an overall shield) transmitting data at rates up to 600 MHz. It comes with one of two connector styles: the standard RJ plug and a non-RJ-style plug and socket interface specified in IEC 61076-2-104:2.

Category 7a (CAT7a) –Class Fa (Amendment 1 and 2 to ISO/IEC 11801, 2nd Ed.) is a fully shielded cable that extends frequency from 600 MHz to 1000 MHz.

Category 8 – The TIA decided to skip Category 7 and 7A and go to Category 8. The TR-42.7 subcommittee is establishing specs for a 40-Gbps twisted-pair solution with a 2-GHz frequency. The proposed standard is for use in a two-point channel in a data center at 30 meters. It is expected to be ratified in February 2016. The TR-42.7 subcommittee is also incorporating ISO/IEC Class II cabling performance criteria into the standard. It is expected to be called TIA-568-C.2-1. The difference between Class I and Class II is that Class II allows for three different styles of connectors that are not compatible with one another or with the RJ-45 connector. Class I uses an RJ-45 connector and is backward compatible with components up to Category 6A. collapse


Black Box Explains...Multicasting video over a LAN: Use the right switch.

In KVM extension applications where you want to distribute HD video across a network, you need to understand how it works and what kind of networking equipment to use with... more/see it nowyour extenders.

Think of your network as a river of data with a steady current of data moving smoothly down the channel. All your network users are like tiny tributaries branching off this river, taking only as much water (bandwidth) as they need to process data. When you start to multicast video, data, and audio over the LAN, those streams suddenly become the size of the main river. Each user is then basically flooded with data and it becomes difficult or impossible to do any other tasks. This scenario of sending transmissions to every user on the network is called broadcasting, and it slows down the network to a trickle. There are network protocol methods that alleviate this problem, but it depends on the network switch you use.

Unicast vs. multicasting, and why a typical Layer 2 switch isn’t sufficient.
Unicasting is sending data from one network device to another (point to point); in a typical unicast network, Layer 2 switches easily support these types of communications. But multicasting is transmitting data from one network device to multiple users. When multicasting with Layer 2 switches, all attached devices receive the packets, whether they want them or not. Because a multicast header does NOT have a destination IP address, an average network switch (a Layer 2 switch without supported capabilities) will not know what to do with it. So the switch sends the packet out to every network port on all attached devices. When the client or network interface card (NIC) receives the packet, it analyzes it and discards it if not wanted.

The solution: a Layer 3 switch with IGMPv2 or IGMPv3 and packet forwarding.
Multicasting with Layer 3 switches is much more efficient than with Layer 2 switches because it identifies the multicast packet and sends it only to the intended receivers. A Layer 2 switch sends the multicast packets to every device and, If there are many sources, the network will slow down because of all the traffic. And, without IGMPv2 or IGMPv3 snooping support, the switch can handle only a few devices sending multicasting packets.

Layer 3 switches with IGMP support, however, “know” who wants to receive the multicast packet and who doesn’t. When a receiving device wants to tap into a multicasting stream, it responds to the multicast broadcast with an IGMP report, the equivalent of saying, “I want to connect to this stream.” The report is only sent in the first cycle, initializing the connection between the stream and receiving device. If the device was previously connected to the stream, it sends a grafting request for removing the temporary block on the unicast routing table. The switch can then send the multicast packets to newly connected members of the multicast group. Then, when a device no longer wants to receive the multicast packets, it sends a pruning request to the IGMP-supported switch, which temporarily removes the device from the multicast group and stream.

Therefore, for multicasting, use routers or Layer 3 switches that support the IGMP protocol. Without this support, your network devices will be receiving so many multicasting packets, they will not be able to communicate with other devices using different protocols, such as FTP. Plus, a feature-rich, IGMP-supported Layer 3 switch gives you the bandwidth control needed to send video from multiple sources over a LAN. collapse


Black Box Explains...Upgrading from VGA to DVI video.

Many new PCs no longer have traditional Cathode Ray Tube (CRT) computer monitors with a VGA interface. The latest high-end computers have Digital Flat Panels (DFPs) with a Digital Visual... more/see it nowInterface (DVI). Although most computers still have traditional monitors, the newer DFPs are coming on strong because flat-panel displays are not only slimmer and more attractive on the desktop, but they’re also capable of providing a much sharper, clearer image than a traditional CRT monitor.

The VGA interface was developed to support traditional CRT monitors. The DVI interface, on the other hand, is designed specifically for digital displays and supports the high resolution, the sharper image detail, and the brighter and truer colors achieved with DFPs.

Most flat-panel displays can be connected to a VGA interface, even though using this interface results in inferior video quality. VGA simply can’t support the image quality offered by a high-end digital monitor. Sadly, because a VGA connection is possible, many computer users connect their DFPs to VGA and never experience the stunning clarity their flat-panel monitors can provide.

It’s important to remember that for your new DFP display to work at its best, it must be connected to a DVI video interface. You should upgrade the video card in your PC when you buy your new video monitor. Your KVM switches should also support DVI if you plan to use them with DFPs. collapse


Black Box Explains…Wizard.NET

One software solution to rule them all.
Wizard.NET is a professional enterprise management suite that delivers total IP device control, management, and connectivity. Black Box KVM over IP (KVMoIP) devices provide... more/see it nowthe ability to control large numbers of host computers from remote locations. When controlling larger groups of dispersed computers using numerous KVMoIP devices, the major challenge becomes one of management—retaining active control over a complex mix of devices, host computers, and registered users. Wizard.NET was developed as a common interface to help you remotely manage any number of KVMoIP devices together with all of their connected host computers and the access rights of the users.

Wizard.NET is delivered as a software solution only, and operates as a server application running on a system that can be completely separate from any of the KVMoIP devices?—?it merely requires an IP network or Internet connection. Wizard.NET uses an intuitive HTML user interface, which means that registered users can access and control it remotely using a standard Web browser. Like all Wizard KVMoIP products, Wizard.NET employs high specification security techniques to ensure that only authorized users may gain access.

Wizard.NET has two main modules, the manager and the connector. The manager module is accessible only to managers and administrators. It is where the details about all connected devices, hosts, and users are configured and stored. The connector module can be used by registered users to enable quick access to all of the targets for which they have access rights. Targets may be devices, hosts, or device groups as appropriate.

To ensure maximum security, Wizard.NET does not retain any passwords within its database for the devices that it controls. Instead, a valid password is used once only to gain access to each device during the “acquire” stage, when Wizard.NET establishes a Secure Ticket with the device. In all subsequent accesses to each device, the relevant secure ticket is used to gain access. collapse


Black Box Explains...Multi-user ServSwitch products vs. multipoint access ServSwitch products.

A multi-user ServSwitch, such as the Matrix ServSwitch, enables two or more users to access different servers at the same time. So, for instance, one user can access “Server A”... more/see it nowwhile another user accesses “Server B.” This is considered a “true two-channel” architecture because two users have independent access to CPUs. It should be pointed out that multiple users cannot access the same server at the same time.

A multipoint access ServSwitch, such as the ServSwitch Duo, provides two access points for control stations but requires that both users view the same server at the same time. So, if one user is accessing “Server A” on his screen, the other user is also seeing “Server A” on his screen. If the second user switches to “Server B,“ the first user will also switch to “Server B.” Only one of these users is actually in control. The user in control stays in control until his workstation is inactive for a period of time (selectable). Then the other station can take control.

A multipoint access ServSwitch is useful when simultaneous, independent access is not required—just the ability to access CPUs from more than one place.

collapse


Black Box Explains...Digital Visual Interface (DVI) and other digital display interfaces.

There are three main types of digital video interfaces: P&D, DFP, and DVI. P&D (Plug & Display, also known as EVC), the earliest of these technologies, supports both digital and... more/see it nowanalog RGB connections and is now used primarily on projectors. DFP (Digital Flat-Panel Port) was the first digital-only connector on displays and graphics cards; it’s being phased out.

There are different types of DVI connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC.

DVI-D is a digital-only connector. DVI-I supports both digital and analog RGB connections. Some manufacturers are offering the DVI-I connector type on their products instead of separate analog and digital connectors. DVI-A is used to carry an analog DVI signal to a VGA device, such as a display. DFP, like DVI-D, was an early digital-only connector used on some displays; it’s being phased out. EVC (also known as P&D) is similar to DVI-I only it’s slightly larger in size. It also handles digital and analog connections, and it’s used primarily on projectors.

All these standards are based on transition-minimized differential signaling (TMDS). In a typical single-line digital signal, voltage is raised to a high level and decreased to a low level to create transitions that convey data. TMDS uses a pair of signal wires to minimize the number of transitions needed to transfer data. When one wire goes to a high-voltage state, the other goes to a low-voltage state. This balance increases the data-transfer rate and improves accuracy. collapse


Black Box Explains...KVMoIP access technology.

KVMoIP access technology extends keyboard, video, and mouse (KVM) signals from any computer or server over TCP/IP via a LAN, WAN, or Internet connection. Through this KVM over IP (KVMoIP)... more/see it nowconnection, remote users can access and control a number of servers simultaneously from wherever they are, inside or outside the organization, and anywhere in the world. This technology works in diverse hardware environments and is ideal for managing multilocation data centers and branch offices.

These capabilities translate into real savings for companies having to deal with the proliferation of servers in many offices, particularly for corporations and government agencies required to deliver 24/7 uptime and real-time access to mission-critical servers 365 days a year.

KVMoIP products combine the advantages of remote access software with the benefits of KVM switching technology. Like most KVM switches, KVMoIP products don’t require any software to be loaded on the host computers. They interface directly with the keyboard, monitor, and mouse connectors of the host computer or KVM switch. Circuitry within the KVMoIP device digitizes the incoming video signal and processes it into digital data that is communicated to a viewer program running on a remote client computer over a LAN/WAN or the public Internet.

By addressing network issues from a remote location, you can simply manage issues from your desk, or even save yourself the hassle of traveling to a site in the middle of the night. Use a browser-based connection, even a cell phone or PDA, to reboot or administer a roomful of servers remotely—a real convenience.

KVMoIP products that feature virtual media technology take that convenience further. They enable a remote user to effortlessly move files from a mass storage device—a USB flash drive or CD-ROM drive, for instance—from your location to the computer on which you’re working. Cost savings are realized through reduced downtime and less travel. Plus, in some cases, there‘s no to need replace existing KVM switches with proprietary ones to get a KVMoIP server-control solution.

The Black Box difference
Black Box® ServSwitch™ KVMoIP solutions go further than many other KVMoIP products on the market. They not only enable you to access remote servers, but they do this at the BIOS level—important when you go need to troubleshoot from off-site and don’t want to a dispatch a technician. Install or recover software applications and install OS patches from your location anywhere in the world. Plus, this BIOS-level control is possible regardless of the server’s brand or model and even works if the operating system is down.

The ServReach™ system is also designed for IT managers seeking global centralized KVM management in a world of mushrooming servers and complexity. This global platform works by consolidating all server access and devices via locally connected KVMoIP devices. All this hardware is then united under a single management appliance or software “umbrella” providing global, yet fully secure, out-of-band control.

The ServReach system works seamlessly with more than 500 variations of analog KVM switches from a multitude of vendors and manufacturers. Because it’s vendor independent, you don’t need to replace your data center’s entire KVM infrastructure. ServReach simply grafts global centralized KVM management onto the existing server room/data center, aligning with third-party KVM switches already in place. This is done with the ServReach KVMGate (KVIP1000A), an IP gateway device designed to connect to each of the legacy KVM devices to provide global centralized KVM management for a fraction of the cost of competitive systems, ensuring a faster and greater ROI.

If you’re planning on opening or acquiring a new data center or a large number of new servers, the ServReach KVManager (KVMGR) is the answer. It can provide any-by-any access via the ServReach KVMCube (KVIP1001A), a compact, rackmountable, digital matrix IP device that gives fully secure, non-blocking access for any of the users to any of the servers simultaneously.

In addition, the servers controlled by legacy KVM switches via KVMGate can still be managed by the ServReach KVManager at the same time as the new servers controlled through a gateway. With all the servers under the same KVManager umbrella, data centers can now easily acquire new servers and devices without having to worry about how to incorporate the new infrastructure with the old. For more information on Black Box KVMoIP solutions, visit blackbox.com/go/ServReach. Find out more by watching a KVMoIP demo and accessing related white papers. collapse


Black Box Explains...UTP cable and color drift.

UTP cable is often used with video or KVM extenders to extend the reach of a video signal. It’s popular for this application because it’s lightweight, easy to handle, and... more/see it nowinexpensive. But when you transmit video over long stretches of twisted-pair cable, you sometimes run into a phenomenon called color drift or color split.

Color drift shows up as that annoying colored shadow you occasionally see around objects on a video screen. It sometimes happens with UTP cable because the pairs of wire in the cable are twisted at slightly different rates to reduce crosstalk between pairs. Because of these differences between wire pairs, video signals for different colors often travel different distances before they reach the remote receiver. When one color signal arrives behind the others because its wire is longer, you get that red, green, or blue shadow around the objects on your video screen.

UTP cable varies widely by manufacturer, so before installing video extenders, it’s difficult to determine whether or not you’re going to have a color drift problem. You’re more likely to experience color drift with higher grades (CAT5e or CAT6) of cable, on longer cable runs, and on high-resolution screens.

If you experience color drift, there are several possible solutions. You can use a shorter length of cable, switch from CAT5e or CAT6 cable to CAT5 cable, use a lower screen resolution, or use a video skew compensator.

A video skew compensator removes color drift by delaying some color signals to compensate for differences in wire pairs. collapse

Results 11-20 of 27 < 1 2 3 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services