Loading


Categories (x) > Jacks, Panels, & Hardware (x)

Results 81-90 of 313 << < 6 7 8 9 10 > >> 
  • Pdf Drawing... 
  • CAT6a Blank Patch Panel (24-Port, 19", 1.75"H, 1U) PDF Drawing
    PDF Drawing for the JPMT700A
 

Product Data Sheets (pdf)...Faceplate and Standoff Rings

  • Pdf Drawing... 
  • Rackmount Fiber Panel, 1U (Loaded with (24) Single-Mode/Multimode Connectors, ST, 24 Simplex) PDF Dr
    PDF Drawing for the JPM370A-R2
 

Product Data Sheets (pdf)...Fiber Optic In-Line Attenuators


Black Box Explains...USB.

The Universal Serial Bus (USB) hardware (plug-and-play) standard makes connecting peripherals to your computer easy. USB 1.1, introduced in 1995, is the original USB standard. It has two data rates:... more/see it now12 Mbps and 1.5 Mbps. USB 2.0, or Hi-Speed USB 2.0, was released in 2000. It increased the peripheral-to-PC speed from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1. This increase in bandwidth enabled the use of peripherals requiring higher throughput, such as CD/DVD burners, scanners, digital cameras, and video equipment. It is backward-compatible with USB 1.1.

The newest USB standard, USB 3.0 (or SuperSpeed USB), (2008) provides vast improvements over USB 2.0. It promises speeds up to 4.8 Gbps, nearly ten times that of USB 2.0. USB 3.0 has the flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors.

USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus. USB 3.0 cable contains nine wires, four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional async, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. Also, USB 3.0 conserves more power when compared to USB 2.0, which uses power when the cable isn’t being used. collapse

  • Pdf Drawing... 
  • Color-Coded Snagless Pre-Plug (Purple) PDF Drawing
    PDF Drawing for the FMT724
 
  • Pdf Drawing... 
  • Fiber Optic Adapter, ST%X96FC, Square Mounting PDF Drawing
    PDF Drawing for the FOT104
 
  • Pdf Drawing... 
  • CAT5e Wiring Block with Legs (Type 110, 300-Pair) PDF Drawing
    PDF Drawing for the JPT5E300
 
  • Pdf Drawing... 
  • CAT5e Connecting Block (5-Pair) PDF Drawing
    PDF Drawing for the JPT5E-5PR-10PAK, JPT5E-5PR-25PAK, and JPT5E-5PR-100PAK
 

Black Box Explains...Category wiring standards

The ABCs of standards
There are two primary organizations dedicated to developing and setting structured cabling standards. In North America, standards are issued by the Telecommunications Industry Association (TIA),... more/see it nowwhich is accredited by the American National Standards Institute (ANSI). The TIA was formed in April 1988 after a merger with the Electronics Industry Association (EIA). That’s why its standards are commonly known as ANSI/TIA/EIA, TIA/EIA, or TIA.

Globally, the organizations that issue standards are the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO). Standards are often listed as ISO/IEC. Other organizations include the Canadian Standards Association (CSA), CENELEC (European Committee for Electrotechnical Standardizations), and the Japanese Standards Association (JSA/JSI).

The committees of all these organizations work together and the performance requirements of the standards are very similar. But there is some confusion in terminology.

The TIA cabling components (cables, connecting hardware, and patch cords) are labeled with a ”category.” These components together form a permanent link or channel that is also called a ”category.” The ISO/IEC defines the link and channel requirements with a ”class” designation. But the components are called a ”category.”

The standards
Category 5 (CAT5) —ratified in 1991. It is no longer recognized for use in networking.

Category 5e (CAT5e), ISO/IEC 11801 Class D, ratified in 1999, is designed to support full-duplex, 4-pair transmission in 100-MHz applications. The CAT5e standard introduced the measurement for PS-NEXT, EL-FEXT, and PS-ELFEXT. CAT5e is no longer recognized for new installations. It is commonly used for 1-GbE installations.

Category 6 (CAT6) – Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TIA TSB-155-A and ISO/IEC 24750 qualifies 10-GbE over CAT6 over channels of 121 to 180 feet (37 to 55 meters) and requires it to be 100% tested, which is extremely time consuming. To mitigate ANEXT in CAT6, it is recommended that the cables be unbundled, that the space between cables be increased, and that non-adjacent patch panel ports be used. If CAT6 F/UTP cable is used, mitigation is not necessary and the length limits do not apply. CAT6 is not recommended for new 10-GbE installations.

Augmented Category 6 (CAT6A) –Class Ea was ratified in February 2008. This standard calls for 10-Gigabit Ethernet data transmission over a 4-pair copper cabling system up to 100 meters. CAT6A extends CAT6 electrical specifications from 250 MHz to 500 MHz. It introduces the ANEXT requirement. It also replaces the term Equal Level Far-End Crosstalk (ELFEXT) with Attenuation to Crosstalk Ratio, Far-End (ACRF) to mesh with ISO terminology. CAT6A provides improved insertion loss over CAT6. It is a good choice for noisy environments with lots of EMI. CAT6A is also well-suited for use with PoE+.

CAT6A UTP cable is significantly larger than CAT6 cable. It features larger conductors, usually 22 AWG, and is designed with more space between the pairs to minimize ANEXT. The outside diameter of CAT6A cable averages 0.29"–0.35" compared to 0.21"–0.24" for CAT6 cable. This reduces the number of cables you can fit in a conduit. At a 40% fill ratio, you can run three CAT6A cables in a 3/4" conduit vs. five CAT6 cables.

CAT6A UTP vs. F/UTP. Although shielded cable has the reputation of being bigger, bulkier, and more difficult to handle and install than unshielded cable, this is not the case with CAT6A F/UTP cable. It is actually easier to handle, requires less space to maintain proper bend radius, and uses smaller conduits, cable trays, and pathways. CAT6A UTP has a larger outside diameter than CAT6A F/UTP cable. This creates a great difference in the fill rate of cabling pathways. An increase in the outside diameter of 0.1", from 0.25" to 0.35" for example, represents a 21% increase in fill volume. In general, CAT6A F/UTP provides a minimum of 35% more fill capacity than CAT6A UTP. In addition, innovations in connector technology have made terminating CAT6A F/UTP actually easier than terminating bulkier CAT6A UTP.

Category 7 (CAT7) –Class F was published in 2002 by the ISO/IEC. It is not a TIA recognized standard and TIA plans to skip over it.

Category 7 specifies minimum performance standards for fully shielded cable (individually shielded pairs surrounded by an overall shield) transmitting data at rates up to 600 MHz. It comes with one of two connector styles: the standard RJ plug and a non-RJ-style plug and socket interface specified in IEC 61076-2-104:2.

Category 7a (CAT7a) –Class Fa (Amendment 1 and 2 to ISO/IEC 11801, 2nd Ed.) is a fully shielded cable that extends frequency from 600 MHz to 1000 MHz.

Category 8 – The TIA decided to skip Category 7 and 7A and go to Category 8. The TR-42.7 subcommittee is establishing specs for a 40-Gbps twisted-pair solution with a 2-GHz frequency. The proposed standard is for use in a two-point channel in a data center at 30 meters. It is expected to be ratified in February 2016. The TR-42.7 subcommittee is also incorporating ISO/IEC Class II cabling performance criteria into the standard. It is expected to be called TIA-568-C.2-1. The difference between Class I and Class II is that Class II allows for three different styles of connectors that are not compatible with one another or with the RJ-45 connector. Class I uses an RJ-45 connector and is backward compatible with components up to Category 6A. collapse

Results 81-90 of 313 << < 6 7 8 9 10 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services