Loading


Categories (x) > Jacks, Panels, & Hardware (x)
Content Type (x) > Black Box Explains (x)

Results 21-30 of 31 < 1 2 3 4 > 

Black Box Explains...Category 6.

Category 6 (CAT6)–Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. In recent years, it has been the... more/see it nowcable of choice for new structured cabling systems. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces the problem of Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TSB-155 qualifies 10-GbE over CAT6 up to 55 meters and requires it to be 100% tested. To mitigate ANEXT in CAT6, it is recommended that you unbundle the cables and increase the separation between the cables.

You can always contact Black Box Tech Support to answer your cabling questions. Our techs can recommend cable testers and steer you in the right direction when you’re installing new cabling. And the advice is FREE! collapse


Black Box Explains...SCSI-1, SCSI-2, SCSI-3, and SCSI-5.

There are standards…and there are standards applied in real-world applications. This Black Box Explains illustrates how SCSI is interpreted by many SCSI manufacturers. Think of these as common SCSI connector... more/see it nowtypes, not as firm SCSI specifications. Notice, for instance, there’s a SCSI-5, which isn’t listed among the other approved and proposed specifications. However, for advanced SCSI multiport applications, SCSI-5 is often the connector of choice.

SCSI-1
Supports transfer rates up to 5 MBps and seven SCSI devices on an 8-bit bus. The most common connector is the Centronics® 50 or a DB50. A Micro Ribbon 50 is also used for internal connections. SCSI-1 equipment, such as controllers, can also have Burndy 60 or 68 connectors.

SCSI-2
SCSI-2 introduced optional 16- and 32-bit buses called “Wide SCSI.“ Transfer rate is normally 10 MBps but SCSI-2 can go up to 40 MBps with Wide and Fast SCSI. SCSI-2 usually features a Micro D 50-pin connector with thumbclips. It’s also known as Mini 50 or Micro DB50. A Micro Ribbon 60 connector may also be used for internal connections.

SCSI-3
Found in many high-end systems, SCSI-3 commonly uses a Micro D 68-pin connector with thumbscrews. It’s also known as Mini 68. The most common bus width is 16 bits with transfer rates of 20 MBps.

SCSI-5
SCSI-5 is also called a Very High-Density Connector Interface (VHDCI) or 0.8-mm connector. It’s similar to the SCSI-3 MD68 connector in that it has 68 pins, but it has a much smaller footprint. SCSI-5 is designed for SCSI-5, next-generation SCSI connections. Manufacturers are integrating this 0.8-mm design into controller cards. It’s also the connector of choice for advanced SCSI multiport applications. Up to four channels can be accommodated in one card slot. Connections are easier where space is limited. collapse


Black Box Explains…Terminating fiber.

Terminating fiber cable used to be a job for experts only. But today, prepolished connectors make it possible for anyone to terminate multimode fiber—all you need is a bit of... more/see it nowpatience and the right tools. Here’s how to terminate fiber with ST connectors:

Step 1 — Slide the connector strain-relief boot, small end first, onto the cable.

Step 2 — Using a template, mark the jacket dimensions to be stripped (40 mm and 52 mm from the end).

Step 3 — Remove the outer jacket from the cable end to the 40 mm mark. Cut the exposed Kevlar. Carefully remove the jacket to the 52-mm mark, exposing the remaining length of Kevlar.

Step 4 — Fan out the Kevlar fibers and slide the crimp ring of the connector approximately 5 mm over the fibers to hold them out of the way. Mark the fiber buffer 11 mm from the end of the cable jacket. Also, mark the buffer where it meets the jacket.

Step 5 — Bit by bit, strip off the buffering until you reach the 11-mm mark. Check the mark you made on the buffer at the jacket. If it’s moved, carefully work the buffer back into the jacket to its original position.

Step 6 — Clean the glass fiber with an alcohol wipe. Cleave the fiber to an 8-mm length.

Step 7 — Carefully insert the fiber into the connector until you feel it bottom out and a bow forms between the connector and the clamp. Cam the connector with the appropriate tool.

Step 8 — Crimp the connector.

Step 9 — Slide the crimp ring up the jacket away from the connector, releasing the Kevlar fibers. Fan the fiber so they encircle the buffer. The ends of the fibers should just touch the rear of the connector—if they’re too long, trim them now.

Step 10 — Crimp the connector again.

Step 11 — Slide the strain-relief boot over the rear of the connector. You might want to put a bead of 411 Loctite adhesive for extra strength on the rear of the boot where it meets the jacket.

Although the details may vary slightly with different connectors and termination kits, the basic termination procedure is the same. collapse


Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.
collapse


Black Box Explains…HDMI

The High-Definition Multimedia Interface (HDMI®) is the first digital interface to combine uncompressed high-definition video, up to eight channels of uncompressed digital audio, and intelligent format and command data in... more/see it nowa single cable. It is now the de facto standard for consumer electronics and high-definition video and is gaining ground in the PC world.

HDMI supports standard, enhanced, and high-definition video. It can carry video signals at resolutions up to and beyond 1080p at 60 Hz (Full HD). The latest version eve support 4K video resolutions.

HDMI offers an easy, standardized way to set up home theaters and AV equipment over one cable. Use it to connect audio/video equipment, such as DVD players, set-top boxes, and A/V receivers with an audio and/or video equipment, such as a digital TVs, PCs, cameras, and camcorders. It also supports multiple audio formats from standard stereo to multichannel surround sound. Plus it provides two-way communications between the video source and the digital TV, enabling simple remote, point-and-click configurations.

NOTE: HDMI also supports HDCP (High-bandwidth Digital Content Protection), which prevents the copying of digital audio and video content transmitted over HDMI able. If you have a device between the source and the display that supports HDMI but not HDCP, your transmission won't work, even over an HDMI cable.

HDMI offers significant benefits over older analog A/V connections. It's backward compatible with DVI equipment, such as PCs. TVs, and other electronic devices using the DVI standard. A DVI-to-HDMI adapter can be used without a loss of video quality. Because DVI only supports video signals, no audio, the DVI device simply ignores the extra audio data.

HDMI standards
The HDMI standard was introduced in December 2002. Since then, there have been a number of versions with increasing bandwidth and/or transmission capabilities.

With the introduction of HDMI (June 2006), more than doubled the bandwidth from 4.95 Gbps to 10.2 Gbps (340 MHz). It offers support for 16-bit color, increased refresh rates, and added support for 1440p WQXGA. It also added support for xvYCC color space and Dolby True HD and DTS-HD Master Audio standards. Plus it added features to automatically correct audio video synchronization. Finally, it added a mini connector.

HDMI 1.3a (November 2006), HDMI 1.3b (March 2007, HDMI 1.3b1 (November 2007), and 1.3c (August 2008) added termination recommendations, control commands, and other specification for testing, etc.

HDMI 1.4 (May 2009) increased the maximum resolution to 4Kx 2K (3840 x 2160 p/24/25/30 Hz). It added an HDMI Ethernet channel for a 100-Mbps connection between two HDMI devices. Other advancements include: an Audio Return Channel, stereoscopic 3D over HDMI (HDMI 1.3 devices will only support this for 1080i), an automotive connection system, and the micro HDMI connector.

HDMI 1.4a (March 2010) adds two additional 3D formats for broadcast content.

HDMI 2.0 (August 2013), which is backwards compatible with earlier versions of the HDMI specification, significantly increases bandwidth up to 18 Gbps and adds key enhancements to support market requirements for enhancing the consumer video and audio experience.

HDMI 2.0 also includes the following advanced features:

  • Resolutions up to 4K@50/60 (2160p), which is four times the clarity of 1080p/60 video resolution, for the ultimate video experience.
  • Up to 32 audio channels for a multi-dimensional immersive audio experience.
  • Up to 1536Hz audio sample frequency for the highest audio fidelity.
  • Simultaneous delivery of dual video streams to multiple users on the same screen.
  • Simultaneous delivery of multi-stream audio to multiple users (up to four).
  • Support for the wide angle theatrical 21:9 video aspect ratio.
  • Dynamic synchronization of video and audio streams.
  • CEC extensions provide more expanded command and control of consumer electronics devices through a single control point.

  • HDMI connectors
    There are four HDMI connector types. Type A and Type B are defined in the HDMI 1.0 specification. Type C is defined in HDMI 1.3, and Type D is defined in HDMI 1.4. Type A: 19 pins. It supports all SDTV, EDTV, and HDTV modes. It is electrically compatible with single-link DVI-D.

    Type B: 29 pins. Offers double the video bandwidth of Type A. Use for very high-resolution displays such as WQUXGA. It's electronically compatible with dual-link DVI-D.

    Type C Mini: 19 pins. This mini connector is intended for portable devices. It is smaller than Type A but has the same pin configuration and can be connected to Type A cable via an adapter or adapter cable.

    Type D Micro: 19 pins. This also has the 19-pin configuration of Type A but is about the size of a micro-USB connector.

    HDMI cable
    Recently, HDMI Licnsing, LLC announced that all able would be tested as either Standard or High-Speed cables. Referring to cables based on HDMI standard (e.g. 1.2, 1.3 etc.) is no longer allowed.

    Standard HDMI cable is designed for use with digital broadcast TV, cable TV, satellites TV, Blu-ray, and upscale DVD payers to reliably transmit up to 1080i or 720p video (or the equivalent of 75 MHz or up to 2.25 Gbps).

    High-Speed HDMI reliably transmits video resolutions of 1080p and beyond, including advanced display technologies such as 4K, 3D, and Deep Color. High-Speed HDMI is the recommended cable for 1080p video. It will perform at speeds of 600 MHz or up to 18 Gbps, the highest bandwidth urgently available over an HDMI cable.

    Additional resources and licensing information is available at HDMI.org. collapse


    Black Box Explains...NEMA ratings for enclosures.

    The National Electrical Manufacturers’ Association (NEMA) issues guidelines and ratings for an enclosure’s level of protection against contaminants that might come in contact with its enclosed equipment.

    There are many numerical... more/see it nowNEMA designations; we’ll discuss NEMA enclosures relevant to our on-line catalog: NEMA 3, NEMA 3R, NEMA 4, NEMA 4X, and NEMA 12.

    NEMA 3 enclosures, designed for both indoor and outdoor use, provide protection against falling dirt, windblown dust, rain, sleet, and snow, as well as ice formation.

    The NEMA 3R rating is identical to NEMA 3 except that it doesn’t specify protection against windblown dust.

    NEMA 4 and 4X enclosures, also designed for indoor and outdoor use, protect against windblown dust and rain, splashing and hose-directed water, and ice formation. NEMA 4X goes further than NEMA 4, specifying that the enclosure will also protect against corrosion caused by the elements.

    NEMA 12 enclosures are constructed for indoor use only and are designed to provide protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing noncorrosive liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 designation. collapse


    Black Box Explains...The MPO connector.

    MPO stands for multifiber push-on connector. It is a connector for multifiber ribbon cable that generally contains 6, 8, 12, or 24 fibers. It is defined by IEC-61754-7 and EIA/TIA-604-5-D,... more/see it nowalso known as FOCIS 5. The MPO connector, combined with lightweight ribbon cable, represents a huge technological advance over traditional multifiber cables. It’s lighter, more compact, easier to install, and less expensive.

    A single MPO connector replaces up to 24 standard connectors. This very high density means lower space requirements and reduced costs for your installation. Traditional, tight-buffered multifiber cable needs to have each fiber individually terminated by a skilled technician. But MPO fiber optic cable, which carries multiple fibers, comes preterminated. Just plug it in and you’re ready to go.BR>
    MPO connectors feature an intuitive push-pull latching sleeve mechanism with an audible click upon connection and are easy to use. The MPO connector is similar to the MT-RJ connector. The MPO’s ferrule surface of 2.45 x 6.40 mm is slightly bigger than the MT-RJ’s, and the latching mechanism works with a sliding sleeve latch rather than a push-in latch.

    The MPO connector can be either male or female. You can tell the male connector by the two alignment pins protruding from the end of the ferrule. The MPO ferrule is generally flat for multimode applications and angled for single-mode applications.

    MPO connectors are also commonly called MTP® connectors, which is a registered trademark of US Conec. The MTP connector is an MPO connector collapse


    Black Box Explains...Digital Visual Interface (DVI) cables.

    The Digital Visual Interface (DVI) standard is based on transition-minimized differential signaling (TMDS). In a typical single-line digital signal, voltage is raised to a high level and decreased to a... more/see it nowlow level to create transitions that convey data. To minimize the number of transitions needed to transfer data, TMDS uses a pair of signal wires. When one wire goes to a high-voltage state, the other goes to a low-voltage state. This balance increases the data-transfer rate and improves accuracy.

    There are different types of DVI connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC. DVI-D is a digital-only connector.

    DVI-D is a digital-only connector. DVI-I supports both digital and analog RGB connections. Some manufacturers are offering the DVI-I connector type on their products instead of separate analog and digital connectors. DVI-A is used to carry an analog DVI signal to a VGA device, such as a display. DFP, like DVI-D, was an early digital-only connector used on some displays; it’s being phased out. EVC (also known as P&D) is similar to DVI-I only it’s slightly larger in size. It also handles digital and analog connections, and it’s used primarily on projectors. collapse


    Black Box Explains...Giga, Giga2, and Giga Plus—what you need to know.

    Our Giga, Giga2, and Giga Plus and systems feature jacks, wallplates, surface-mount boxes, and other accessories. Components of each system are designed to work together. And they all work with... more/see it nowour GigaTrue® CAT6 and GigaBase® CAT5e cable. Here are the differences between the systems so you can make the right decision when choosing hardware.

    Giga

  • Giga products are our original line of jacks, wallplates, etc.
  • Giga products, such as jacks and wallplates, are designed to work with Giga products.
  • To meet the needs of existing Giga systems, we continue to carry Giga products.

  • Giga2
  • Giga2 products are a newer line. They offer the same quality but are priced economically.
  • Giga2 products, such as jacks and wallplates, are designed to work with Giga2 products.

  • Giga Plus
  • Giga Plus is our newest line and is entirely made in the U.S. So if you need to buy American-made products, choose this line.
  • Giga Plus products are designed to work with Giga2 products.
  • collapse


    DisplayPort cable.

    DisplayPort is a digital video interface that was designed by the Video Electronics Standards Association (VESA) in 2006 and has been produced since 2008. It competes directly with HDMI®. Unlike... more/see it nowHDMI, however, DisplayPort is an open standard with no royalties.

    This digital interface is used primarily between a computer and a monitor or a high-definition television and is built into many computer chipsets produced today. It’s incredibly versatile, with the capability to deliver digital video, audio, bidirectional communications, and accessory power over a single connector.

    DisplayPort v1.1 supports a maximum of 10.8 Gbps over a 2-meter cable; v1.2 supports up to 21.6 Gbps. DisplayPort v1.2 also enables you to daisychain up to four monitors with only a single output cable. It also offers the future promise of DisplayPort Hubs that would operate much like a USB hub.

    The standard DisplayPort connector is very compact and features latches that don’t add to the connector’s size. Unlike HDMI, a DisplayPort connector is easily lockable with a pinch-down locking hood, so it can't be easily dislodged. However, a quick squeeze of the connector releases the latch.

    DisplayPort supports cable lengths of up to 15 meters with maximum resolutions at cable lengths up to 3 meters. Bidirectional signaling enables DisplayPort to both send and receive data from an attached device.

    With the proper adapters, DisplayPort cable can carry DVI and HDMI signals, although this doesn’t work the other way around—DVI and HDMI cable can’t carry DisplayPort. Because DisplayPort can provide power to attached devices, DisplayPort to HDMI or DVI adapters don’t need a separate power supply.

    The Mini DisplayPort (MiniDP or mDP) is a miniatured version of the DisplayPort interface. It carries both digital and analog computer video and audio signals. Apple® introduced the Mini DisplayPort connector in 2008 and it is now on all new Mac® computers. It is also being used in newer PC notebooks. This small form factor connector fully supports the VESA DisplayPort protocol. It is particularly useful on systems where space is at a premium, such as laptops, or to support multiple connectors on reduced height add-in cards.

    collapse

    Results 21-30 of 31 < 1 2 3 4 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services