Loading



Results 1-3 of 3 1 

Black Box Explains...PC, UPC, and APC fiber connectors.

Fiber optic cables have different types of mechanical connections. The type of connection determines the quality of the fiber optic lightwave transmission. The different types we’ll discuss here are the... more/see it nowflat-surface, Physical Contact (PC), Ultra Physical Contact (UPC), and Angled Physical Contact (APC).

The original fiber connector is a flat-surface connection, or a flat connector. When mated, an air gap naturally forms between the two surfaces from small imperfections in the flat surfaces. The back reflection in flat connectors is about -14 dB or roughly 4%.

As technology progresses, connections improve. The most common connection now is the PC connector. Physical Contact connectors are just that—the end faces and fibers of two cables actually touch each other when mated.

In the PC connector, the two fibers meet, as they do with the flat connector, but the end faces are polished to be slightly curved or spherical. This eliminates the air gap and forces the fibers into contact. The back reflection is about -40 dB. This connector is used in most applications.

An improvement to the PC is the UPC connector. The end faces are given an extended polishing for a better surface finish. The back reflection is reduced even more to about -55 dB. These connectors are often used in digital, CATV, and telephony systems.

The latest technology is the APC connector. The end faces are still curved but are angled at an industry-standard eight degrees. This maintains a tight connection, and it reduces back reflection to about -70 dB. These connectors are preferred for CATV and analog systems.

PC and UPC connectors have reliable, low insertion losses. But their back reflection depends on the surface finish of the fiber. The finer the fiber grain structure, the lower the back reflection. And when PC and UPC connectors are continually mated and remated, back reflection degrades at a rate of about 4 to 6 dB every 100 matings for a PC connector. APC connector back reflection does not degrade with repeated matings. collapse


Product Data Sheets (pdf)...Fiber Optic In-Line Attenuators


Black Box Explains...Fiber optic attenuators.

Attenuators are used with single-mode fiber optic devices and cable to filter the strength of the fiber optic signal. Depending on the type of attenuator attached to the devices at... more/see it noweach end of the fiber optic cable, you can diminish the strength of the light signal a variable amount, measured in decibels (dB).

Why would you want to filter the strength of the fiber optic signal? Single-mode fiber is designed to carry a fiber optic signal long distances—as much as 70 kilometers (or 43.4 miles). Fiber devices send this signal with great force to ensure that the signal, and your data, arrive at the other end intact.

But when two fiber devices connected with single-mode fiber cable are close to each other, the signal may be too strong. As a result, the light signal reflects back down the fiber cable. Data can be corrupted and transmissions can be faulty. A signal that is too strong can even damage the attached equipment.

Because it’s probably not feasible to move your fiber equipment farther apart, the easiest solution is to attach an attenuator to each fiber device. Just as sunglasses filter the strength of sunlight, attenuators filter the strength of the light signal transmitted along single-mode fiber cable. Within the attenuator, there’s doping that reduces the strength of the signal passing through the fiber connection and minute air gaps where the two fibers meet. Fiber grooves may also be intentionally misaligned by several microns—but only enough to slow the fiber optic signal to an acceptable rate as it travels down the cable.

Before selecting an attenuator, you need to check the type of adapter on your fiber devices. Attenuators typically fit into any patch panel equipped with FC, SC, or LC adapters that contain either PC or APC contacts. In addition to the type of adapter, you also need to determine the necessary attenuation value, such as 5 or 10 dB. This value varies, depending on the strength of fiber optic signal desired. collapse

Results 1-3 of 3 1 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services