Loading


Categories (x) > Jacks, Panels, & Hardware > Connectors (x)

Results 11-20 of 45 < 1 2 3 4 5 > 
  • Pdf Drawing... 
  • Color-Coded Snagless Pre-Plug (Brown) PDF Drawing
    PDF Drawing for the FMT737
 
  • Pdf Drawing... 
  • CAT6 Modular Plugs, RJ-45
    PDF Drawing for the FMTP6-R2-10PAK, FMTP6-R2-25PAK, FMTP6-R2-50PAK, FMTP6-R2-100PAK, FMTP6-R2-250PAK
 
  • Pdf Drawing... 
  • Fiber Optic Connector PDF Drawing
    PDF Drawing for the FOT226-R2
 
  • Pdf Drawing... 
  • RCA Connector, Passthrough, Female/Female, Yellow, PDF drawing
    PDF drawing for FMT400 (v1)
 

Product Data Sheets (pdf)...Crimp Lock Multimode Fiber Optic Connectors


Black Box Explains...Fiber optic ferrule sleeves.

In a fiber optic adapter, the internal ferrule sleeve holds the fiber in place and aligns the filament of one fiber ferrule with its mate. The ferrule sleeve is the... more/see it nowmost expensive component to manufacture in a fiber optic adapter, accounting for approximately 80% of the total adapter cost.

The ferrule alignment sleeves are also the most critical part of a fiber optic connection process. They provide the bridge between one cable’s ferrule and another cable’s ferrule interface. The precision of the ferrule sleeve and its hole determines how well the fibers align, which affects the light signal transmission.

Fiber optic adapters are generally made with ceramic or metal ferrule sleeves. Some adapters also feature ferrule sleeves that are a combination of these materials.

Ceramic ferrule sleeves are more precisely molded and fit close to the fiber ferrule. This precise molding gives the fiber optic connection a lower optical loss. As a general rule, use ceramic ferrule sleeves for critical network connections, such as backbone runs in highly secure networks or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrule sleeves best suit single-mode cable connections.

Ferrule sleeves made of metal, such as bronze ferrules, offer more durability than ceramic sleeves, but they may not offer the same precision alignment as ceramic ferrule sleeves. Drilling an accurate hole through the metal ferrule sleeve can be difficult, and that can result in less accurate fiber alignment. The use of watch-jeweled centering improves alignment. But overall, metal ferrule sleeves are better suited for multimode fiber applications where absolute alignment isn’t crucial.
collapse

  • Pdf Drawing... 
  • RCA Female/110 Punchdown Connector, Red, PDF drawing
    Drawing for FMT430 (v1)
 

Black Box Explains…Terminating fiber.

Terminating fiber cable used to be a job for experts only. But today, prepolished connectors make it possible for anyone to terminate multimode fiber—all you need is a bit of... more/see it nowpatience and the right tools. Here’s how to terminate fiber with ST connectors:

Step 1 — Slide the connector strain-relief boot, small end first, onto the cable.

Step 2 — Using a template, mark the jacket dimensions to be stripped (40 mm and 52 mm from the end).

Step 3 — Remove the outer jacket from the cable end to the 40 mm mark. Cut the exposed Kevlar. Carefully remove the jacket to the 52-mm mark, exposing the remaining length of Kevlar.

Step 4 — Fan out the Kevlar fibers and slide the crimp ring of the connector approximately 5 mm over the fibers to hold them out of the way. Mark the fiber buffer 11 mm from the end of the cable jacket. Also, mark the buffer where it meets the jacket.

Step 5 — Bit by bit, strip off the buffering until you reach the 11-mm mark. Check the mark you made on the buffer at the jacket. If it’s moved, carefully work the buffer back into the jacket to its original position.

Step 6 — Clean the glass fiber with an alcohol wipe. Cleave the fiber to an 8-mm length.

Step 7 — Carefully insert the fiber into the connector until you feel it bottom out and a bow forms between the connector and the clamp. Cam the connector with the appropriate tool.

Step 8 — Crimp the connector.

Step 9 — Slide the crimp ring up the jacket away from the connector, releasing the Kevlar fibers. Fan the fiber so they encircle the buffer. The ends of the fibers should just touch the rear of the connector—if they’re too long, trim them now.

Step 10 — Crimp the connector again.

Step 11 — Slide the strain-relief boot over the rear of the connector. You might want to put a bead of 411 Loctite adhesive for extra strength on the rear of the boot where it meets the jacket.

Although the details may vary slightly with different connectors and termination kits, the basic termination procedure is the same. collapse

  • Pdf Drawing... 
  • CAT5e Shielded Modular Plug, RJ-45
    PDF Drawing for the FMTPES-10PAK, FMTPES-25PAK, FMTPES-50PAK, FMTPES-100PAK, and FMTPES-250PAK
 

Black Box Explains...Coax connectors.

The BNC (Bayonet-Neill-Concelman) connector is the most commonly used coax connector. This large ”bayonet“ connector features a slotted outer conductor and an inner plastic dielectric, and it offers easy connection... more/see it nowand disconnection. After insertion, the plug is turned, tightening the pins in the socket. It is widely used in video and Radio Frequency (RF) applications up to 2.4 GHz. It is also common in 10BASE2 Ethernet networks, on cable interconnections, network cards, and test equipment.

The TNC connector is a threaded version of the BNC connector. It works in frequencies up to 12 GHz. It‘s commonly used in cellular telephone RF/antenna applications.

The N connector is a larger, threaded connector that was designed in the 1940s for military systems operating at less than 5 GHz. In the 1960s, improvements raised performance to 12 GHz. The connector features an internal gasket and is hand tightened. It is common on 2.4-GHz antennas.

The UHF connector looks like a coarse-threaded, big center-conductor version of the N connector. It was developed in the 1930s. It is suitable for use up to 200–300 MHz and generally offers nonconstant impedance.

The F connector is most often used in cable and satellite TV and antenna applications; and it performs well at high frequencies. The connector has a 3/8–32 coupling thread. Some F connectors are also available in a screw-on style.

The SMA (Subminiature A) connector is one of the most common RF/microwave connectors. This small, threaded connector is used on small cables that won’t be connected and disconnected often. It’s designed for use to 12.4 GHz, but works well at 18, and sometimes even up to 24 GHz. This connector is often used in avionics, radar, and microwave communications.

The SMC (Subminiature C) connector is a small, screw-on version of the SMA. It uses a 10–32 threaded interface and can be used in frequencies up to 10 GHz. This connector is used primarily in microwave environments.

The SMB (Subminiature B) connector is a small version of the SMC connector. It was developed in the 1960s and features a snap-on coupling for fast connections. It features a self-centering outer spring and overlapping dielectric. It is rated from 2–4 GHZ, but can possibly work up to 10 GHz.

The MCX (Micro Coax) connector is a coax RF connector developed in the 1980s. It has a snap-on interface and uses the same inner contact and insulator as the SMB connector but is 30% smaller. It can be used in broadband applications up to 6 GHz. collapse

Results 11-20 of 45 < 1 2 3 4 5 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services