Loading


Categories (x) > Jacks, Panels, & Hardware > Connectors (x)

Results 11-20 of 42 < 1 2 3 4 5 > 

Product Data Sheets (pdf)...Fiber Connector Tool Kit


Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700


850-nm Ethernet Distance
1-GbE
OM3: 1000 m

OM4: 1000 m


10-GbE
OM3: 300 m

OM4: 550 m


40-GbE
OM3: 100 m

OM4: 150 m


100-GbE
OM3: 100 m

OM4: 150 m

collapse

  • Pdf Drawing... 
  • Fiber Optic Connector PDF Drawing
    PDF Drawing for the FOT200-R2 and FOT203-R2
 
  • Pdf Drawing... 
  • Color-Coded Snagless Pre-Plug (Pink) PDF Drawing
    PDF Drawing for the FMT734
 

Product Data Sheets (pdf)...Snagless Pre-Plugs

  • Pdf Drawing... 
  • Fiber Optic Connector PDF Drawing
    PDF Drawing for the FOT225 and FOT227
 
  • Pdf Drawing... 
  • Color-Coded Snagless Pre-Plug (White) PDF Drawing
    PDF Drawing for the FMT723
 

Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.
collapse


Black Box Explains...Coax connectors.

The BNC (Bayonet-Neill-Concelman) connector is the most commonly used coax connector. This large ”bayonet“ connector features a slotted outer conductor and an inner plastic dielectric, and it offers easy connection... more/see it nowand disconnection. After insertion, the plug is turned, tightening the pins in the socket. It is widely used in video and Radio Frequency (RF) applications up to 2.4 GHz. It is also common in 10BASE2 Ethernet networks, on cable interconnections, network cards, and test equipment.

The TNC connector is a threaded version of the BNC connector. It works in frequencies up to 12 GHz. It‘s commonly used in cellular telephone RF/antenna applications.

The N connector is a larger, threaded connector that was designed in the 1940s for military systems operating at less than 5 GHz. In the 1960s, improvements raised performance to 12 GHz. The connector features an internal gasket and is hand tightened. It is common on 2.4-GHz antennas.

The UHF connector looks like a coarse-threaded, big center-conductor version of the N connector. It was developed in the 1930s. It is suitable for use up to 200–300 MHz and generally offers nonconstant impedance.

The F connector is most often used in cable and satellite TV and antenna applications; and it performs well at high frequencies. The connector has a 3/8–32 coupling thread. Some F connectors are also available in a screw-on style.

The SMA (Subminiature A) connector is one of the most common RF/microwave connectors. This small, threaded connector is used on small cables that won’t be connected and disconnected often. It’s designed for use to 12.4 GHz, but works well at 18, and sometimes even up to 24 GHz. This connector is often used in avionics, radar, and microwave communications.

The SMC (Subminiature C) connector is a small, screw-on version of the SMA. It uses a 10–32 threaded interface and can be used in frequencies up to 10 GHz. This connector is used primarily in microwave environments.

The SMB (Subminiature B) connector is a small version of the SMC connector. It was developed in the 1960s and features a snap-on coupling for fast connections. It features a self-centering outer spring and overlapping dielectric. It is rated from 2–4 GHZ, but can possibly work up to 10 GHz.

The MCX (Micro Coax) connector is a coax RF connector developed in the 1980s. It has a snap-on interface and uses the same inner contact and insulator as the SMB connector but is 30% smaller. It can be used in broadband applications up to 6 GHz. collapse

  • Pdf Drawing... 
  • Fiber Optic Connector PDF Drawing
    PDF Drawing for the FOT206 and FOT209
 
Results 11-20 of 42 < 1 2 3 4 5 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services