Categories (x) > Jacks, Panels, & Hardware > Connectors (x)
Content Type (x) > Black Box Explains (x)

Results 1-8 of 8 1 

Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.

Black Box Explains...PC, UPC, and APC fiber connectors.

Fiber optic cables have different types of mechanical connections. The type of connection determines the quality of the fiber optic lightwave transmission. The different types we’ll discuss here are the... more/see it nowflat-surface, Physical Contact (PC), Ultra Physical Contact (UPC), and Angled Physical Contact (APC).

The original fiber connector is a flat-surface connection, or a flat connector. When mated, an air gap naturally forms between the two surfaces from small imperfections in the flat surfaces. The back reflection in flat connectors is about -14 dB or roughly 4%.

As technology progresses, connections improve. The most common connection now is the PC connector. Physical Contact connectors are just that—the end faces and fibers of two cables actually touch each other when mated.

In the PC connector, the two fibers meet, as they do with the flat connector, but the end faces are polished to be slightly curved or spherical. This eliminates the air gap and forces the fibers into contact. The back reflection is about -40 dB. This connector is used in most applications.

An improvement to the PC is the UPC connector. The end faces are given an extended polishing for a better surface finish. The back reflection is reduced even more to about -55 dB. These connectors are often used in digital, CATV, and telephony systems.

The latest technology is the APC connector. The end faces are still curved but are angled at an industry-standard eight degrees. This maintains a tight connection, and it reduces back reflection to about -70 dB. These connectors are preferred for CATV and analog systems.

PC and UPC connectors have reliable, low insertion losses. But their back reflection depends on the surface finish of the fiber. The finer the fiber grain structure, the lower the back reflection. And when PC and UPC connectors are continually mated and remated, back reflection degrades at a rate of about 4 to 6 dB every 100 matings for a PC connector. APC connector back reflection does not degrade with repeated matings. collapse

Black Box Explains…Terminating fiber.

Terminating fiber cable used to be a job for experts only. But today, prepolished connectors make it possible for anyone to terminate multimode fiber—all you need is a bit of... more/see it nowpatience and the right tools. Here’s how to terminate fiber with ST connectors:

Step 1 — Slide the connector strain-relief boot, small end first, onto the cable.

Step 2 — Using a template, mark the jacket dimensions to be stripped (40 mm and 52 mm from the end).

Step 3 — Remove the outer jacket from the cable end to the 40 mm mark. Cut the exposed Kevlar. Carefully remove the jacket to the 52-mm mark, exposing the remaining length of Kevlar.

Step 4 — Fan out the Kevlar fibers and slide the crimp ring of the connector approximately 5 mm over the fibers to hold them out of the way. Mark the fiber buffer 11 mm from the end of the cable jacket. Also, mark the buffer where it meets the jacket.

Step 5 — Bit by bit, strip off the buffering until you reach the 11-mm mark. Check the mark you made on the buffer at the jacket. If it’s moved, carefully work the buffer back into the jacket to its original position.

Step 6 — Clean the glass fiber with an alcohol wipe. Cleave the fiber to an 8-mm length.

Step 7 — Carefully insert the fiber into the connector until you feel it bottom out and a bow forms between the connector and the clamp. Cam the connector with the appropriate tool.

Step 8 — Crimp the connector.

Step 9 — Slide the crimp ring up the jacket away from the connector, releasing the Kevlar fibers. Fan the fiber so they encircle the buffer. The ends of the fibers should just touch the rear of the connector—if they’re too long, trim them now.

Step 10 — Crimp the connector again.

Step 11 — Slide the strain-relief boot over the rear of the connector. You might want to put a bead of 411 Loctite adhesive for extra strength on the rear of the boot where it meets the jacket.

Although the details may vary slightly with different connectors and termination kits, the basic termination procedure is the same. collapse

Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700

850-nm Ethernet Distance
OM3: 1000 m

OM4: 1000 m

OM3: 300 m

OM4: 550 m

OM3: 100 m

OM4: 150 m

OM3: 100 m

OM4: 150 m


Black Box Explains...Category wiring standards

The ABCs of standards
There are two primary organizations dedicated to developing and setting structured cabling standards. In North America, standards are issued by the Telecommunications Industry Association (TIA),... more/see it nowwhich is accredited by the American National Standards Institute (ANSI). The TIA was formed in April 1988 after a merger with the Electronics Industry Association (EIA). That’s why its standards are commonly known as ANSI/TIA/EIA, TIA/EIA, or TIA.

Globally, the organizations that issue standards are the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO). Standards are often listed as ISO/IEC. Other organizations include the Canadian Standards Association (CSA), CENELEC (European Committee for Electrotechnical Standardizations), and the Japanese Standards Association (JSA/JSI).

The committees of all these organizations work together and the performance requirements of the standards are very similar. But there is some confusion in terminology.

The TIA cabling components (cables, connecting hardware, and patch cords) are labeled with a ”category.” These components together form a permanent link or channel that is also called a ”category.” The ISO/IEC defines the link and channel requirements with a ”class” designation. But the components are called a ”category.”

The standards
Category 5 (CAT5) —ratified in 1991. It is no longer recognized for use in networking.

Category 5e (CAT5e), ISO/IEC 11801 Class D, ratified in 1999, is designed to support full-duplex, 4-pair transmission in 100-MHz applications. The CAT5e standard introduced the measurement for PS-NEXT, EL-FEXT, and PS-ELFEXT. CAT5e is no longer recognized for new installations. It is commonly used for 1-GbE installations.

Category 6 (CAT6) – Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TIA TSB-155-A and ISO/IEC 24750 qualifies 10-GbE over CAT6 over channels of 121 to 180 feet (37 to 55 meters) and requires it to be 100% tested, which is extremely time consuming. To mitigate ANEXT in CAT6, it is recommended that the cables be unbundled, that the space between cables be increased, and that non-adjacent patch panel ports be used. If CAT6 F/UTP cable is used, mitigation is not necessary and the length limits do not apply. CAT6 is not recommended for new 10-GbE installations.

Augmented Category 6 (CAT6A) –Class Ea was ratified in February 2008. This standard calls for 10-Gigabit Ethernet data transmission over a 4-pair copper cabling system up to 100 meters. CAT6A extends CAT6 electrical specifications from 250 MHz to 500 MHz. It introduces the ANEXT requirement. It also replaces the term Equal Level Far-End Crosstalk (ELFEXT) with Attenuation to Crosstalk Ratio, Far-End (ACRF) to mesh with ISO terminology. CAT6A provides improved insertion loss over CAT6. It is a good choice for noisy environments with lots of EMI. CAT6A is also well-suited for use with PoE+.

CAT6A UTP cable is significantly larger than CAT6 cable. It features larger conductors, usually 22 AWG, and is designed with more space between the pairs to minimize ANEXT. The outside diameter of CAT6A cable averages 0.29"–0.35" compared to 0.21"–0.24" for CAT6 cable. This reduces the number of cables you can fit in a conduit. At a 40% fill ratio, you can run three CAT6A cables in a 3/4" conduit vs. five CAT6 cables.

CAT6A UTP vs. F/UTP. Although shielded cable has the reputation of being bigger, bulkier, and more difficult to handle and install than unshielded cable, this is not the case with CAT6A F/UTP cable. It is actually easier to handle, requires less space to maintain proper bend radius, and uses smaller conduits, cable trays, and pathways. CAT6A UTP has a larger outside diameter than CAT6A F/UTP cable. This creates a great difference in the fill rate of cabling pathways. An increase in the outside diameter of 0.1", from 0.25" to 0.35" for example, represents a 21% increase in fill volume. In general, CAT6A F/UTP provides a minimum of 35% more fill capacity than CAT6A UTP. In addition, innovations in connector technology have made terminating CAT6A F/UTP actually easier than terminating bulkier CAT6A UTP.

Category 7 (CAT7) –Class F was published in 2002 by the ISO/IEC. It is not a TIA recognized standard and TIA plans to skip over it.

Category 7 specifies minimum performance standards for fully shielded cable (individually shielded pairs surrounded by an overall shield) transmitting data at rates up to 600 MHz. It comes with one of two connector styles: the standard RJ plug and a non-RJ-style plug and socket interface specified in IEC 61076-2-104:2.

Category 7a (CAT7a) –Class Fa (Amendment 1 and 2 to ISO/IEC 11801, 2nd Ed.) is a fully shielded cable that extends frequency from 600 MHz to 1000 MHz.

Category 8 – The TIA decided to skip Category 7 and 7A and go to Category 8. The TR-42.7 subcommittee is establishing specs for a 40-Gbps twisted-pair solution with a 2-GHz frequency. The proposed standard is for use in a two-point channel in a data center at 30 meters. It is expected to be ratified in February 2016. The TR-42.7 subcommittee is also incorporating ISO/IEC Class II cabling performance criteria into the standard. It is expected to be called TIA-568-C.2-1. The difference between Class I and Class II is that Class II allows for three different styles of connectors that are not compatible with one another or with the RJ-45 connector. Class I uses an RJ-45 connector and is backward compatible with components up to Category 6A. collapse

Black Box Explains...Fiber optic ferrule sleeves.

In a fiber optic adapter, the internal ferrule sleeve holds the fiber in place and aligns the filament of one fiber ferrule with its mate. The ferrule sleeve is the... more/see it nowmost expensive component to manufacture in a fiber optic adapter, accounting for approximately 80% of the total adapter cost.

The ferrule alignment sleeves are also the most critical part of a fiber optic connection process. They provide the bridge between one cable’s ferrule and another cable’s ferrule interface. The precision of the ferrule sleeve and its hole determines how well the fibers align, which affects the light signal transmission.

Fiber optic adapters are generally made with ceramic or metal ferrule sleeves. Some adapters also feature ferrule sleeves that are a combination of these materials.

Ceramic ferrule sleeves are more precisely molded and fit close to the fiber ferrule. This precise molding gives the fiber optic connection a lower optical loss. As a general rule, use ceramic ferrule sleeves for critical network connections, such as backbone runs in highly secure networks or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrule sleeves best suit single-mode cable connections.

Ferrule sleeves made of metal, such as bronze ferrules, offer more durability than ceramic sleeves, but they may not offer the same precision alignment as ceramic ferrule sleeves. Drilling an accurate hole through the metal ferrule sleeve can be difficult, and that can result in less accurate fiber alignment. The use of watch-jeweled centering improves alignment. But overall, metal ferrule sleeves are better suited for multimode fiber applications where absolute alignment isn’t crucial.

Black Box Explains...Industrial Ethernet (Ethernet/IP) and IP-rated connectors.

Ethernet technology is coming to the factory floor. Once limited to office environments, Ethernet has proven to be a robust alternative to the RS-232 interface traditionally used with industrial devices... more/see it nowsuch as programmable logic controllers. Ethernet brings speed, versatility, and cost savings to industrial environments.

The requirements of industrial environments are different than offices, so there are industrial Ethernet standards. The most common is the Ethernet/Industrial Protocol (Ethernet/IP) standard, usually called Industrial Ethernet. Industrial Ethernet adapts ordinary, off-the-shelf IEEE 802.3 Ethernet communication chips and physical media to industrial applications.

The Ingress Protection (IP) ratings developed by the European Committee for Electrotechnical Standardization (CENELEC) specify the environmental protection an enclosure provides.

An IP rating consists of two or three numbers. The first number refers to protection from solid objects or materials; the second number refers to protection from liquids; and the third number, commonly omitted from the rating, refers to protection against mechanical impacts. An IP67 rating means that a connector is totally protected from dust and from the effects of immersion in 5.9 inches (15 cm) to 3.2 feet (1 m) of water for 30 minutes.

Because office-grade RJ-45 connectors do not stand up to an industrial environment, the Ethernet/IP standard calls for sealed industrial RJ-45 connectors that meet an IP67 standard, meaning the connectors are sealed against dust and water. collapse

Black Box Explains...Coax connectors.

The BNC (Bayonet-Neill-Concelman) connector is the most commonly used coax connector. This large ”bayonet“ connector features a slotted outer conductor and an inner plastic dielectric, and it offers easy connection... more/see it nowand disconnection. After insertion, the plug is turned, tightening the pins in the socket. It is widely used in video and Radio Frequency (RF) applications up to 2.4 GHz. It is also common in 10BASE2 Ethernet networks, on cable interconnections, network cards, and test equipment.

The TNC connector is a threaded version of the BNC connector. It works in frequencies up to 12 GHz. It‘s commonly used in cellular telephone RF/antenna applications.

The N connector is a larger, threaded connector that was designed in the 1940s for military systems operating at less than 5 GHz. In the 1960s, improvements raised performance to 12 GHz. The connector features an internal gasket and is hand tightened. It is common on 2.4-GHz antennas.

The UHF connector looks like a coarse-threaded, big center-conductor version of the N connector. It was developed in the 1930s. It is suitable for use up to 200–300 MHz and generally offers nonconstant impedance.

The F connector is most often used in cable and satellite TV and antenna applications; and it performs well at high frequencies. The connector has a 3/8–32 coupling thread. Some F connectors are also available in a screw-on style.

The SMA (Subminiature A) connector is one of the most common RF/microwave connectors. This small, threaded connector is used on small cables that won’t be connected and disconnected often. It’s designed for use to 12.4 GHz, but works well at 18, and sometimes even up to 24 GHz. This connector is often used in avionics, radar, and microwave communications.

The SMC (Subminiature C) connector is a small, screw-on version of the SMA. It uses a 10–32 threaded interface and can be used in frequencies up to 10 GHz. This connector is used primarily in microwave environments.

The SMB (Subminiature B) connector is a small version of the SMC connector. It was developed in the 1960s and features a snap-on coupling for fast connections. It features a self-centering outer spring and overlapping dielectric. It is rated from 2–4 GHZ, but can possibly work up to 10 GHz.

The MCX (Micro Coax) connector is a coax RF connector developed in the 1980s. It has a snap-on interface and uses the same inner contact and insulator as the SMB connector but is 30% smaller. It can be used in broadband applications up to 6 GHz. collapse

Results 1-8 of 8 1 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Black Box 1-800-316-7107 Black Box Network Services