Loading


Categories (x) > Industrial (x)

Results 31-40 of 388 < 1 2 3 4 5 > >> 
  • Pdf Drawing... 
  • GigaTrue CAT6 Channel 550-MHz Patch Cable (UTP) with Snagless Boots (Green) PDF Drawing
    PDF Drawing of the EVNSL642 Series
 

Product Data Sheets (pdf)...Data Broadcast Units


Product Data Sheets (pdf)...DIN Rail Converter and Repeaters with Opto-Isolation


Black Box Explains...Category 6.

Category 6 (CAT6)–Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. In recent years, it has been the... more/see it nowcable of choice for new structured cabling systems. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces the problem of Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TSB-155 qualifies 10-GbE over CAT6 up to 55 meters and requires it to be 100% tested. To mitigate ANEXT in CAT6, it is recommended that you unbundle the cables and increase the separation between the cables.

You can always contact Black Box Tech Support to answer your cabling questions. Our techs can recommend cable testers and steer you in the right direction when you’re installing new cabling. And the advice is FREE! collapse


Product Data Sheets (pdf)...RS-232 Fallback Switch


Black Box Explains... Guidelines for choosing fiber optic cable.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. It’s favored for applications that... more/see it nowneed high bandwidth, long distances, and complete immunity to electrical interference.

It’s ideal for high-data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances.

Fiber offers the following advantages:

Greater bandwidth—Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase.

Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber and many CATV companies are converting to fiber.

Low attenuation and greater distance—Because the fiber optic signal is made of light, very little signal loss occurs during transmission, and data can move at higher speeds and greater distances. Fiber does not have the 100-meter (328-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters (984.2 ft.) to 40 kilometers (24.8 mi.), depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.

Security—Your data is safe with fiber cable. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.

Immunity and reliability—Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The core is made of glass, which is an insulator, so no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.

Design—Fiber is lightweight, thin, and more durable than copper cable. Plus, fiber optic cable has pulling specifications that are up to 10 times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper, advancements in connectors are making termination easier. In addition, fiber is actually easier to test than copper cable.

Migration—The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.

Standards—TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). An addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet (10-GbE) standard.

Costs—The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.

Types of fiber cable and standards.

Multimode, 50- and 62.5-micron cable—Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be used for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable—Single-mode cable has a small 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber. collapse

  • Pdf Drawing... 
  • GigaBase 350 CAT5e, 350-MHz Solid Bulk Cable (Plenum, White) PDF Drawing
    PDF Drawing of the EYN852A-PB-1000 (1)
 
  • Manual... 
  • DeeSel.1 Industrial Ethernet Extender User Manual
    User Manual for the LB532A-L & LB532A-R (Version 1)
 
  • Quick Start Guide... 
  • LPH1004A Series Hardened Ethernet PoE+ Switch QSG
    Quick Start Guide for the LPH1004A (Version 1)
 

Product Data Sheets (pdf)...Special-Application Surge Protectors

Results 31-40 of 388 < 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services