Loading


Categories (x) > Industrial (x)
Content Type (x) > Black Box Explains (x)

Results 41-50 of 63 < 1 2 3 4 5 > >> 

Fiber optic cable construction and types.

Multimode vs. single-mode
Multimode cable has a large-diameter core and multiple pathways of light. It is most commonly available in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can... more/see it nowbe used for most general data and voice fiber applications such as adding segments to an existing network, and in smaller applications such as alarm systems and bringing fiber to the desktop. Both multimode cable cores use either LED or laser light sources.

Multimode 50-micron cable is recommended for premise applications?(backbone, horizontal, and intrabuilding connections). It should be considered for any new construction and for installations because it provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength, than 62.5-micron cable does.

Multimode cable commonly has an orange or aqua jacket; single-mode has yellow. Other colors are available for various applications and for identification purposes.

Single-mode cable has a small (8–10-micron) glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable does. Consequently, single-mode cable is typically used in high-bandwidth applications and in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex at more than twice the throughput of multimode fiber.

Construction
Fiber optic cable consists of a core, cladding, coating, buffer strengthening fibers, and cable jacket.

The core is the physical medium that transports optical data signals from an attached light source to a receiving device. It is a single continuous strand of glass or plastic that’s measured (in microns) by the size of its outer diameter.

All fiber optic cable is sized according to its core’s outer diameter. The two multimode sizes most commonly available are 50 and 62.5 microns. Single-mode cores are generally less than 9 microns.

The cladding is a thin layer that surrounds the fiber core and serves as a boundary that contains the light waves and causes the refraction, enabling data to travel throughout the length of the fiber segment.

The coating is a layer of plastic that surrounds the core and cladding to reinforce the fiber core, help absorb shocks, and provide extra protection against excessive cable bends. These coatings are measured in microns (µ); the coating is 250µ and the buffer is 900µ.

Strengthening fibers help protect the core against crushing forces and excessive tension during installation. This material is generally Kevlar® yarn strands within the cable jacket.

The cable jacket is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some types can have black, yellow, aqua or other color jackets. Various colors can be used to designate different applications within a network.

Simplex vs. duplex patch cables
Multimode and single-mode patch cables can be simplex or duplex.

Simplex has one fiber, while duplex zipcord has two fibers joined with a thin web. Simplex (also known as single strand) and duplex zipcord cables are tight-buffered and jacketed, with Kevlar strength members.

Because simplex fiber optic cable consists of only one fiber link, you should use it for applications that only require one-way data transfer. For instance, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location.

Use duplex multimode or single-mode fiber optic cable for applications that require simultaneous, bidirectional data transfer. Workstations, fiber switches and servers, Ethernet switches, backbone ports, and similar hardware require duplex cable.

PVC (riser) vs. plenum-rated
PVC cable (also called riser-rated cable even though not all PVC cable is riser-rated) features an outer polyvinyl chloride jacket that gives off toxic fumes when it burns. It can be used for horizontal and vertical runs, but only if the building features a contained ventilation system. Plenum can replace PVC, but PVC cannot be used in plenum spaces.

“Riser-rated” means that the jacket is fire-resistant. However, it can still give off noxious fumes when overheated. The cable carries an OFNR rating and is not for use in plenums.

Plenum-jacketed cables have FEP, such as Teflon®, which emits less toxic fumes when it burns. A plenum is a space within the building designed for the movement of environmental air. In most office buildings, the space above the ceiling is used for the HVAC air return. If cable goes through that space, it must be “plenum-rated.”

Distribution-style vs. breakout-style
Distribution-style cables have several tight-buffered fibers bundled under the same jacket with Kevlar or fiberglass rod reinforcement. These cables are small in size and are typically used within a building for short, dry conduit runs, in either riser or plenum applications. The fibers can be directly terminated, but because the fibers are not individually reinforced, these cables need to be terminated inside a patch panel, junction box, fiber enclosure, or cabinet.

Breakout-style cables are made of several simplex cables bundled together, making a strong design that is larger than distribution cables. Breakout cables are suitable for riser and plenum applications.

Loose-tube vs. tight-buffered
Both loose-tube and tight-buffered cables contain some type of strengthening member, such as aramid yarn, stainless steel wire strands, or even gel-filled sleeves. But each is designed for very different environments.

Loose-tube cable is specifically designed for harsh outdoor environments. It protects the fiber core, cladding, and coating by enclosing everything within semi-rigid protective sleeves or tubes. Many loose-tube cables also have a water-resistant gel that surrounds the fibers. This gel helps protect them from moisture, so the cables are great for harsh, high-humidity environments where water or condensation can be a problem. The gel-filled tubes can also expand and contract with temperature changes. Gel-filled loose-tube cable is not the best choice for indoor applications.

Tight-buffered cable, in contrast, is optimized for indoor applications. Because it’s sturdier than loose-tube cable, it’s best suited for moderate-length LAN/WAN connections, or long indoor runs. It’s easier to install as well, because there’s no messy gel to clean up and it doesn’t require a fan-out kit for splicing or termination.

Indoor/outdoor cable
Indoor/outdoor cable uses dry-block technology to seal ruptures against moisture seepage and gel-filled buffer tubes to halt moisture migration. Comprised of a ripcord, core binder, a flame-retardant layer, overcoat, aramid yarn, and an outer jacket, it is designed for aerial, duct, tray, and riser applications.

Interlocking armored cable
This fiber cable is jacketed in aluminum interlocking armor so it can be run just about anywhere in a building. Ideal for harsh environments, it is rugged and rodent resistant. No conduit is needed, so it’s a labor- and money-saving alternative to using innerducts for fiber cable runs.

Outside-plant cable is used in direct burials. It delivers optimum performance in extreme conditions and is terminated within 50 feet of a building entrance. It blocks water and is rodent-resistant.

Interlocking armored cable is lightweight and flexible but also extraordinarily strong. It is ideal for out-of-the-way premise links.

Laser-optimized 10-Gigabit cable
Laser-optimized multimode fiber cable assemblies differ from standard multimode cable assemblies because they have graded refractive index profile fiber optic cable in each assembly. This means that the refractive index of the core glass decreases toward the outer cladding, so the paths of light towards the outer edge of the fiber travel quicker than the other paths. This increase in speed equalizes the travel time for both short and long light paths, ensuring accurate information transmission and receipt over much greater distances, up to 300 meters at 10 Gbps.

Laser-optimized multimode fiber cable is ideal for premise networking applications that include long distances. It is usually aqua colored.

collapse


Black Box Explains…A terminal server by any other name.

A terminal server (sometimes called a serial server or a console server or a device server) is a hardware device that enables you to connect serial devices across a network.

Terminal... more/see it nowservers acquired their name because they were originally used for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. But if you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


Black Box Explains... Pulling eyes and fiber cable.

Fiber optic cable can be damaged if pulled improperly. Broken or cracked fiber, for example, can result from pulling on the fiber core or jacket instead of the strength member.... more/see it nowAnd too much tension or stress on the jacket, as well as too tight of a bend radius, can damage the fiber core. If the cable’s core is harmed, the damage can be difficult to detect.

Once the cable is pulled successfully, damage can still occur during the termination phase. Field termination can be difficult and is often done incorrectly, resulting in poor transmission. One way to eliminate field termination is to pull preterminated cable. But this can damage the cable as well because the connectors can be knocked off during the pulling process. The terminated cable may also be too bulky to fit through ducts easily. To help solve all these problems, use preterminated fiber optic cable with a pulling eye. This works best for runs up to 2000 feet (609.6 m).

The pulling eye contains a connector and a flexible, multiweave mesh-fabric gripping tube. The latched connector is attached internally to the Kevlar®, which absorbs most of the pulling tension. Additionally, the pulling eye’s mesh grips the jacket over a wide surface area, distributing any remaining pulling tension and renders it harmless. The end of the gripping tube features one of three different types of pulling eyes: swivel, flexible, or breakaway.

Swivel eyes enable the cable to go around bends without getting tangled. They also prevent twists in the pull from being transferred to the cable. A flexible eye follows the line of the pull around corners and bends, but it’s less rigid. A breakaway eye offers a swivel function but breaks if the tension is too great. We recommend using the swivel-type pulling eye.

A pulling eye enables all the fibers to be preterminated to ensure better performance. The terminated fibers are staggered inside the gripping tube to minimize the diameter of the cable. This enables the cable to be pulled through the conduit more easily. collapse


Black Box Explains...What to look for in a channel solution.


Channel solution. You hear the term a lot these days to describe complete copper or fiber cabling systems. But what exactly is a channel solution and what are its benefits?... more/see it now

A definition.
A channel solution is a cabling system from the data center to the desktop where every cable, jack, and patch panel is designed to work together and give you consistent end-to-end performance when compared with the EIA/TIA requirements.

Its benefits.
A channel solution is beneficial because you have some assurance that your cabling components will perform as specified. Without that assurance, one part may not be doing its job, so your entire system may not be performing up to standard, which is a problem — especially if you rely on bandwidth-heavy links for video and voice.

What to look for.
There are a lot of channel solutions advertised on the Internet and elsewhere. So what exactly should you be looking for?

For one, make sure it’s a fully tested, guaranteed channel solution. The facts show an inferior cabling system can cause up to 70 percent of network downtime — even though it usually represents only 5 percent of an initial network investment. So don’t risk widespread failure by skimping on a system that doesn’t offer guaranteed channel performance. You need to make sure the products are engineered to meet or go beyond the key measurements for CAT5e or CAT6 performance.

And, sure, they may be designed to work together, but does the supplier absolutely guarantee how well they perform as part of a channel — end to end? Don’t just rely on what the supplier says. They may claim their products meet CAT5e or CAT6 requirements, but the proof is in the performance. Start by asking if the channel solution is independently tested and certified by a reputable third party. There are a lot of suppliers out there who don’t have the trademarked ETL approval logo, for example.

What ETL Verified means.
The ETL logo certifies that a channel solution has been found to be in compliance with recognized standards. To ensure consistent top quality, Black Box participates in independent third-party testing by InterTek Testing Services/ETL Semko, Inc. Once a quarter, an Intertek inspector visits Black Box and randomly selects cable and cabling products for testing.

The GigaTrue® CAT6 and GigaBase® CAT5e Solid Bulk Cable are ETL Verified at the component level to verify that they conform to the applicable industry standards. The GigaTrue® CAT6 and GigaBase® CAT5e Channels, consisting of bulk cable, patch cable, jacks, patch panels, and wiring blocks, are tested and verified according to industry standards in a LAN environment under InterTek’s Cabling System Channel Verification Program. For the latest test results, contact our FREE Tech Support. collapse


The ANSI/ISA Standard and Hazardous Locations

Fires and explosions are a major safety concern in industrial plants. Electrical equipment that must be installed in these locations should be specifically designed and tested to operate under extreme... more/see it nowconditions. The hazardous location classification system was designed to promote the safe use of electrical equipment in those areas “where fire or explosion hazards may exist due to flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers of flyings.”

The NEC and CSA define hazardous locations by three classes:
Class 1: Gas or vapor hazards
Class 2: Dust hazards
Class 3: Fibers and flyings

Two divisions:
Division 1: An environment where ignitable gases, liquids, vapors or dusts can exist Division 2: Locations where ignitables are not likely to exist

Hazardous classes are further defined by groups A, B, C, D, E, F, and G:
A. Acetylene
B. Hydrogen
C. Ethlene, carbon monoxide
D. Hydrocarbons, fuels, solvents
E. Metals
F. Carbonaceous dusts including coal, carbon black, coke
G. Flour, starch, grain, combustible plastic or chemical dust

ANSI/ISA 12.12.01
Our line of Industrial Ethernet Switches (LEH1208A, LEH1208A-2GMMSC, LEH1216A and LEH1216A-2GMMSC) is fully compliant with ANSI/ISA 12.12.01, a construction standard for Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations. ANSI/ISA 12.12.01-2000 is similar to UL1604, but is more stringent (for a full list of changes, see Compliance Today). UL1604 was withdrawn in 2012 and replaced with ISA 12.12.01.

The standard provides the requirements for the design, construction, and marking of electrical equipment or parts of such equipment used in Class I and Class II, Division 2 and Class III, Divisions 1 and 2 hazardous (classified) locations. This type of equipment, in normal operation, is not capable of causing ignition.

The standard establishes uniformity in test methods for determining the suitability of equipment as related to their potential to ignite to a specific flammable gas or vapor-in-air mixture, combustible dust, easily ignitable fibers, or flyings under the following ambient conditions:
a) an ambient temperature of -25°C to 40°C.
b) an oxygen concentration of not greater than 21 percent by volume.
c) a pressure of 80 kPa (0.8 bar) to 110 kPa (1.1 bar).

The standard is available for purchase at www.webstore.ansi.org. To learn more about ANSI/ISA 12.12.01 and hazardous location types, visit https://www.osha.gov/doc/outreachtraining/htmlfiles/hazloc.html. -- collapse


Black Box Explains...Loose-tube vs. tight-buffered fiber optic cable.

There are two styles of fiber optic cable construction: loose tube and tight buffered. Both contain some type of strengthening member, such as aramid yarn, stainless steel wire strands, or... more/see it noweven gel-filled sleeves. But each is designed for very different environments.

Loose tube cables, the older of the two cable types, are specifically designed for harsh outdoor environments. They protect the fiber core, cladding, and coating by enclosing everything within semi-rigid protective sleeves or tubes. In loose-tube cables that hold more than one optical fiber, each individually sleeved core is bundled loosely within an all-encompassing outer jacket.

Many loose-tube cables also have a water-resistant gel that surrounds the fibers. This gel helps protect them from moisture, so the cables are great for harsh, high-humidity environments where water or condensation can be a problem. The gel-filled tubes can expand and contract with temperature changes, too.

But gel-filled loose-tube cables are not the best choice when cable needs to be submerged or where it’s routed around multiple bends. Excess cable strain can force fibers to emerge from the gel.

Tight-buffered cables, in contrast, are optimized for indoor applications. Because they’re sturdier than loose-tube cables, they’re best suited for moderate-length LAN/WAN connections, long indoor runs, and even direct burial. Tight-buffered cables are also recommended for underwater applications.

Instead of a gel layer or sleeve to protect the fiber core, tight-buffered cables use a two-layer coating. One is plastic; the other is waterproof acrylate. The acrylate coating keeps moisture away from the cable, like the gel-filled sleeves do for loose-tube cables. But this acrylate layer is bound tightly to the plastic fiber layer, so the core is never exposed (as it can be with gel-filled cables) when the cable is bent or compressed underwater.

Tight-buffered cables are also easier to install because there’s no messy gel to clean up and they don’t require a fan-out kit for splicing or termination. You can crimp connectors directly to each fiber.

Want the best of both worlds? Try a hybrid, breakout-style fiber optic cable, which combines tight-buffered cables within a loose-tube housing. collapse


Black Box Explains...Fiber.


Fiber versus copper.

When planning a new or upgraded cabling infrastructure, you have two basic choices: fiber or copper. Both offer superior data transmission. The decision on which one... more/see it nowto use may be difficult. It will often depend on your current network, your future networking needs, and your particular application, including bandwidth, distances, environment, cost, and more. In some cases, copper may be a better choice; in other situations, fiber offers advantages.


Although copper cable is currently more popular and much more predominant in structured cabling systems and networks, fiber is quickly gaining fans.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. Fiber optic cable is favored for applications that need high bandwidth, long distances, and complete immunity to electrical interference. It’s ideal for high data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances. A common application for fiber optic cable is as a network backbone, where huge amounts of data are transmitted. To help you decide if fiber is right for your new network or if you want to migrate to fiber, take a look at the following:



The advantages of fiber.

Greater bandwidth-Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase. Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber, and many CATV companies are converting to fiber.


Low attenuation and greater distance-Because the fiber optic signal is made of light, very little signal loss occurs during transmission so data can move at higher speeds and greater distances. Fiber does not have the 100-meter (304.8-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters to 40 kilometers, depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.


Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.


Security-Your data is safe with fiber cable. It does not radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the security of your fiber system, you’ll know it.


Immunity and reliability-Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The fiber is made of glass, which is an insulator, so no electric current can flow through. It is immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper is and can be submerged in water.


Design-Fiber is lightweight, thin, and more durable than copper cable. And, contrary to what you might think, fiber optic cable has pulling specifications that are up to ten times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper is, advancements in connectors are making temination easier. In addition, fiber is actually easier to test than copper cable.


Migration-The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.


Standards-New TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). A recent addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet standard.


Costs-The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.


Multimode or single-mode, duplex or simplex?

Multimode-Multimode fiber optic cable can be used for most general fiber applications. Use multimode fiber for bringing fiber to the desktop, for adding segments to your existing network, or in smaller applications such as alarm systems. Multimode cable comes with two different core sizes: 50 micron or 62.5 micron.


Single-mode-Single-mode is used over distances longer than a few miles. Telcos use it for connections between switching offices. Single-mode cable features an 8.5-micron glass core.


Duplex-Use duplex multimode or single-mode fiber optic cable for applications that require simultaneous, bidirectional data transfer. Workstations, fiber switches and servers, fiber modems, and similar hardware require duplex cable. Duplex is available in single- and multimode.


Simplex-Because simplex fiber optic cable consists of only one fiber link, you should use it for applications that only require one-way data transfer. For instance, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location. Simplex fiber comes in single- and multimode types.


50- vs. 62.5-micron cable.

Although 50-micron fiber cable features a smaller core, which is the light-carrying portion of the fiber, both 62.5- and 50-micron cable feature the same glass cladding diameter of 125 microns. You can use both in the same types of networks, although 50-micron cable is recommended for premise applications: backbone, horizontal, and intrabuilding connections, and should be considered especially for any new construction and installations. And both can use either LED or laser light sources.


The big difference between 50-micron and 62.5-micron cable is in bandwidth-50-micron cable features three times the bandwidth of standard 62.5-micron cable, particularly at 850 nm. The 850-nm wavelength is becoming more important as lasers are being used more frequently as a light source.


Other differences are distance and speed. 50-micron cable provides longer link lengths and/or higher speeds in the 850-nm wavelength. See the table below.




The ferrules: ceramic or composite?

As a general rule, use ceramic ferrules for critical network connections such as backbone cables or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrules are more precisely molded and fit closer to the fiber, which gives the fiber optic cables a lower optical loss.


Use composite ferrules for connections that are less critical to the network’s overall operation and less frequently changed. Like their ceramic counterparts, composite ferrules are characterized by low loss, good quality, and a long life. However, they are not as precisely molded and slightly easier to damage, so they aren’t as well-suited for critical connections.


Testing and certifying fiber optic cable.

If you’re accustomed to certifying copper cable, you’ll be pleasantly surprised at how easy it is to certify fiber optic cable because it’s immune to electrical interference. You only need to check a few measurements.

Attenuation (or decibel loss)-Measured in decibels/kilometer (dB/km), this is the decrease of signal strength as it travels through the fiber cable. Generally, attenuation problems are more common on multimode fiber optic cables.

Return loss-This is the amount of light reflected from the far end of the cable back to the source. The lower the number, the better. For example, a reading of -60 decibels is better than -20 decibels. Like attenuation, return loss is usually greater with multimode cable.

Graded refractive index-This measures how the light is sent down the fiber. This is commonly measured at wavelengths of 850 and 1300 nanometers. Compared to other operating frequencies, these two ranges yield the lowest intrinsic power loss. (NOTE: This is valid for multimode fiber only.)

Propagation delay-This is the time it takes a signal to travel from one point to another over a transmission channel.

Optical time-domain reflectometry (OTDR)-This enables you to isolate cable faults by transmitting high-frequency pulses onto a cable and examining their reflections along the cable. With OTDR, you can also determine the length of a fiber optic cable because the OTDR value includes the distance the optic signal travels.


There are many fiber optic testers on the market today. Basic fiber optic testers function by shining a light down one end of the cable. At the other end, there’s a receiver calibrated to the strength of the light source. With this test, you can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget. If the measured loss is less than the number calculated by your loss budget, your installation is good.


Newer fiber optic testers have a broad range of capabilities. They can test both 850- and 1300-nanometer signals at the same time and can even check your cable for compliance with specific standards.


Fiber precautions.

A few properties particular to fiber optic cable can cause problems if you aren’t careful during installation.

Intrinsic power loss-As the optic signal travels through the fiber core, the signal inevitably loses some speed through absorption, reflection, and scattering. This problem is easy to manage by making sure your splices are good and your connections are clean.

Microbending-Microbends are minute deviations in fiber caused by excessive bends, pinches, and kinks. Using cable with reinforcing fibers and other special manufacturing techniques minimizes this problem.

Connector loss-Connector loss occurs when two fiber segments are misaligned. This problem is commonly caused by poor splicing. Scratches and dirt introduced during the splicing process can also cause connector loss.

Coupling loss-Similar to connector loss, coupling loss results in reduced signal power and is from poorly terminated connector couplings.


Remember to be careful and use common sense when installing fiber cable. Use clean components. Keep dirt and dust to a minimum. Don’t pull the cable excessively or bend it too sharply around any corners. That way, your fiber optic installation can serve you well for many years.

collapse


Black Box Explains...Choosing cabinets and racks.



Why cabinets? Why racks?


A cabinet is an enclosure with a door (or doors); a rack is an open frame. There are several things you... more/see it nowshould consider when you’re deciding whether you need an enclosed cabinet or a rack.


First, what equipment will you be putting in it? The extra stability of a cabinet might be important if you’re installing large, heavy equipment like servers. But if you need frequent access to all sides of the equipment, an open rack might be more convenient. And if your equipment needs a lot of ventilation, you’ll have to be more careful about the air supply if you enclose it in a cabinet.


Second, in what environment will you be installing it? If the environment is open or dusty, for example, you might need the extra protection of an enclosed cabinet. On the other hand, a rack might be perfectly adequate in a well-maintained data center.


Don’t neglect aesthetics. Will customers or clients see your installation? A cabinet with a door looks much neater than an open rack. When you’re trying to create a professional image, everything counts.


Finally, there’s security. An enclosed cabinet can be locked with a simple lock and key.


On the other hand, there are advantages to open racks, too. It’s easier to get at all sides of the equipment. But you’ll have to take other steps to keep the equipment secure-keeping it in a locked room, for example.


Both cabinets and racks come in all sizes and in many different installation styles. Some are freestanding; some are designed to be mounted on a wall. Others sit on the floor but attach to the wall for more stability.


If you need to set up your installation in a hurry, you can order a preassembled cabinet. You’re ready to load your equipment as soon as the cabinet arrives.


Choosing the right server cabinet.

Consider this quick checklist of features when choosing a server cabinet:

  • High-volume airflow. The requirements for additional airflow increase as more servers are mounted in a cabinet. Additionally, manufacturers are making servers narrower to increase available space. But with more servers in the same amount of space, heat buildup is frequently a problem.
  • Extra depth to accommodate newer, deeper servers.
  • Adjustable rails.
  • Rails with M6 square holes. Although 10-32 tapped and drilled holes are sometimes still required, newer hardware has M6 square holes. Know which type of mounting equipment you’ll need.
  • Front and/or rear accessibility.
NEMA 12 certification.

The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact with the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.


Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible.


Choosing the right rack.

Before you choose a rack, you have to determine what equipment you need to house. This list can include CPUs, monitors, keyboards, modems, servers, switches, hubs, routers, and UPSs. Consider the size and weight of all your equipment as well. The rack must be large and strong enough to hold everything you have now, and you’ll also want to leave extra room for growth.

Most racks are designed to hold equipment that’s 19" (48.3 cm) wide. But height and depth may vary from rack to rack. Common rack heights range from 39" (99.1 cm) to 87" (221 cm).


Another measurement you should know about is the rack unit. One rack unit, abbreviated as U, equals 1.75" (4.4 cm). A rack that is 20U, for example, has 20 rack spaces for equipment, or is 35" high (88.9 cm).


Understanding cabinet and rack measurements.

The main component of a cabinet or rack is a set of vertical rails with mounting holes to which you attach your equipment or shelves. When you consider the width or height of the rack, clarify whether they are inside or outside dimensions.

The first measurement you need to know is the width between the rails. The most common size is 19 inches with hole-to-hole centers measuring 18.3 inches. But there are also 23-inch and 24-inch cabinets and racks. Most rackmount equipment is made to fit 19-inch rails but can be adapted to fit wider rails.


After the width, the most important specification is the number of rack units, abbreviated “U.” It’s a measurement of vertical space available on the rails. Because the width is standard, the amount of vertical space is what determines how much equipment you can actually install. Remember that this measurement of usable vertical space is smaller than the external height of the cabinet or rack.


One rack unit (1U) is 1.75 inches of usable vertical space. So, for example, a rackmount device that’s 2U high will take up 3.5 inches of rack space. A rack that’s 20U high will have 35 inches of usable space.

Because both racks and the equipment that fit in them are usually measured in rack units, it’s easy to figure out how much equipment you can fit in a given cabinet or rack.



Do you need a fan?

Even if your cabinet or rack is in a climate-controlled room, the equipment in it can generate a lot of heat. You may want to consider adding a fan to help keep your equipment from overheating. It’s especially important to have adequate ventilation in an enclosed cabinet.


Getting power to your equipment.

Unless you want to live in a forest of extension cords, you’ll need one or more power strips. Some cabinets come with power strips built in.


If you need to order a power strip, consider which kind will be best for your installation. Rackmount power strips come in versions that mount either vertically or horizontally. Some have outlets that are spaced widely to accommodate transformer blocks-a useful feature if your equipment uses bulky power transformers.


Surge protection is another important issue. Some power strips have built-in surge protection; some don’t. With all the money you have invested in rackmount equipment, you’ll certainly want to make sure it’s protected.


Any mission-critical equipment should also be connected to an uninterruptible power supply (UPS). A UPS keeps your equipment from crashing during a brief blackout or brownout and gives you enough time to shut down everything properly in an extended power outage. You can choose a rackmount UPS for the most critical equipment, or you can plug the whole rack into a standalone UPS.


Managing the cables.

Your equipment may look very tidy when it’s neatly stacked in a cabinet. But you still have an opportunity to make a mess once you start connecting it all. Unless you’re very careful with your cables, you can create a rat’s nest you’ll never be able to sort out.


There are many cabinet and rack accessories that can simplify cable organization. We have Cable Management Guides, Rackmount Cable Raceways, Horizontal Covered Organizers, Vertical Cable Organizers, Horizontal Wire Ring Panels, and Cable Manager Hangers-all designed to help you manage your cables more easily.


Plotting your connections in advance helps you to decide how to organize the cables. Knowing where the connectors are on your equipment tells you where it’s most efficient to run cables horizontally and where it’s better to run them vertically.

The important thing is to have a plan. Most network problems are in the cabling, so if you let your cables get away from you now, you’re sure to pay for it down the road.


Asking for help.

When you’re setting up a cabinet or rack, you have a lot of different factors to consider. Black Box Tech Support is always happy to help you figure out what you need and how to put it together. For cabinets and racks solutions, call our Connectivity Group at 724-746-5500, press 1, 2, 2.

collapse


Black Box Explains...IRQs, COM Ports, and Windows

Windows® 95 normally requires each serial port to have its own unique Interrupt Request Line (IRQ). However, if you use a third-party communications driver that supports IRQ sharing, you can... more/see it nowshare interrupts. Unfortunately, data throughput will not be as high as with single interrupt port configurations.

With Windows NT®, you can share interrupts across multiple ports as long as the serial ports have an Interrupt Status Port (ISP) built into the card.

The Interrupt Service Routine, a software routine that services interrupts and requests processor time, reads the ISP and is immmediately directed to the port that has an interrupt pending. Compared to the polling method used if the serial ports don’t have an ISP, this feature can determine which port generated the interrupt up to four times more efficiently—and it almost eliminates the risk of lost data. Windows NT supports the ISP by enabling the user to configure the registry to match the card’s settings. Black Box models IC102C-R3, IC058C, and IC112C-R3 all have ISPs and come with a Windows NT setup utility to simplify installation and configuration.

If your serial port doesn’t have an ISP, the Interrupt Service Routine has to poll each port separately to determine which port generated the interrupt. collapse


Black Box Explains...USB.

What is USB?
Universal Serial Bus (USB) is a royalty-free bus specification developed in the 1990s by leading manufacturers in the PC and telephony industries to support plug-and-play peripheral connections. USB... more/see it nowhas standardized how peripherals, such as keyboards, disk drivers, cameras, printers, and hubs) are connected to computers.

USB offers increased bandwidth, isochronous and asynchronous data transfer, and lower cost than older input/output ports. Designed to consolidate the cable clutter associated with multiple peripherals and ports, USB supports all types of computer- and telephone-related devices.

Universal Serial Bus (USB) USB detects and configures the new devices instantly.
Before USB, adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect digital printers, recorders, backup drives, and other devices in seconds. USB detects and configures the new devices instantly.

Benefits of USB.
• USB is “universal.” Almost every device today has a USB port of some type.
• Convenient plug-and-play connections. No powering down. No rebooting.
• Power. USB supplies power so you don’t have to worry about adding power. The A socket supplies the power.
• Speed. USB is fast and getting faster. The original USB 1.0 had a data rate of 1.5 Mbps. USB 3.0 has a data rate of 4.8 Gbps.

USB Standards

USB 1.1
USB 1.1, introduced in 1995, is the original USB standard. It has two data rates: 12 Mbps (Full-Speed) for devices such as disk drives that need high-speed throughput and 1.5 Mbps (Low-Speed) for devices such as joysticks that need much lower bandwidth.

USB 2.0
In 2002, USB 2.0, (High-Speed) was introduced. This version is backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1.

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as printers, cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously.

USB 3.0
USB 3.0 (SuperSpeed) (2008) provides vast improvements over USB 2.0. USB 3.0 has speeds up to 5 Gbps, nearly ten times that of USB 2.0. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus.

USB 3.0 is designed to be backward compatible with USB 2.0.

USB 3.0 Connector
USB 3.0 has a flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors. Type A plugs from USB 3.0 and 2.0 are designed to interoperate. USB 3.0 Type B plugs are larger than USB 2.0 plugs. USB 2.0 Type B plugs can be inserted into USB 3.0 receptacles, but the opposite is not possible.

USB 3.0 Cable
The USB 3.0 cable contains nine wires—four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 Power
USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It also conserves power too compared to USB 2.0, which uses power when the cable isn’t being used.

USB 3.1
Released in 2013, is called SuperSpeed USB 10 Gbps. There are three main differentiators to USB 3.1. It doubles the data rate from 5 Gbps to 10 Gbps. It will use the new, under-development Type C connector, which is far smaller and designed for use with everything from laptops to mobile phones. The Type C connector is being touted as a single-cable solution for audio, video, data, and power. It will also have a reversible plug orientation. Lastly, will have bidirectional power delivery of up to 100 watts and power auto-negotiation. It is backward compatible with USB 3.0 and 2.0, but an adapter is needed for the physical connection.

Transmission Rates
USB 3.0: 4.8 Gbps
USB 2.0: 480 Mbps
USB 1.1: 12 Mbps

Cable Length/Node
5 meters (3 meters for 3.0 devices requiring higher speeds).
Devices/bus: 127
Tier/bus: 5
collapse

Results 41-50 of 63 < 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-800-316-7107 Black Box Network Services