Loading


Categories (x) > Industrial > Networking > Media Converters > MultiPower Miniature Media Converters (x)

Results 1-10 of 12 1 2 > 
  • Visio Stencil Drawing... 
  • Visio Stencil
    Stencil Drawings
 
  • Manual... 
  • Gigabit PoE Media Converter User Manual
    User Manual for the LGC5200A, LGC5201A, LGC5202A, LGC5210A, LGC5211A, LGC5212A, LGC5200-PS, LGC5210-PS, & LGC200-WALL (Version 1)
 

Black Box Explains...Gigabit Ethernet.

As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

Compatibility
Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

Affordability and adaptability
You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

1000BASE-X
1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

1000BASE-SX
The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

1000BASE-LX
The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

1000BASE-CX
The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

Gigabit over CAT5—1000BASE-TX
The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse


Black Box Explains...Media converters.



Media converters interconnect different cable types such as twisted pair, fiber, and coax within an existing network. They are often used to connect newer Ethernet equipment to legacy cabling.... more/see it nowThey can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference (EMI).


Traditional media converters are purely Layer 1 devices that only convert electrical signals and physical media. They don’t do anything to the data coming through the link so they’re totally transparent to data. These converters have two ports—one port for each media type. Layer 1 media converters only operate at one speed and cannot, for instance, support both 10-Mbps and 100-Mbps Ethernet.


Some media converters are more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services—in other words, they’re really switches. This kind of media converter often has more than two ports, enabling you to, for instance, extend two or more copper links across a single fiber link. They also often feature autosensing ports on the copper side, making them useful for linking segments operating at different speeds.


Media converters are available in standalone models that convert between two different media types and in chassis-based models that connect many different media types in a single housing.




Rent an apartment

Standalone converters convert between two media. But, like a small apartment, they can be outgrown. Consider your current and future applications before selecting a media converter. Standalone converters are available in many configurations, including 10BASE-T to multimode or single-mode fiber, 10BASE-T to Thin coax (ThinNet), 10BASE-T to thick coax (standard Ethernet), CDDI to FDDI, and Thin coax to fiber. 100BASE-T and 100BASE-FX models that connect UTP to single- or multimode fiber are also available. With the development of Gigabit Ethernet (1000 Mbps), media converters have been created to make the transition to high-speed networks easier.




...or buy a house.

Chassis-based or modular media converters are normally rackmountable and have slots that house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and 10BASE-T, 100BASE-TX, 100BASE-FX, and Gigabit modules may also be mixed.

collapse


Black Box Explains...Single-strand fiber WDM.

Traditional fiber optic media converters perform a useful function but don’t really reduce the amount of cable needed to send data on a fiber segment. They still require two strands... more/see it nowof glass to send transmit and receive signals for fiber media communications. Wouldn’t it be better to combine these two logical communication paths within one strand?

That’s exactly what single-strand fiber conversion does. It compresses the transmit and receive wavelengths into one single-mode fiber strand.

The conversion is done with Wave-Division Multiplexing (WDM) technology. WDM technology increases the information-carrying capacity of optical fiber by transmitting two signals simultaneously at different wavelengths on the same fiber. The way it usually works is that one unit transmits at 1310 nm and receives at 1550 nm. The other unit transmits at 1550 nm and receives at 1310 nm. The two wavelengths operate independently and don’t interfere with each other. This bidirectional traffic flow effectively converts a single fiber into a pair of “virtual fibers,” each driven independently at different wavelengths.

Although most implementations of WDM on single-strand fiber offer two channels, four-channel versions are just being introduced, and versions offering as many as 10 channels with Gigabit capacity are on the horizon.

WDM on single-strand fiber is most often used for point-to-point links on a long-distance network. It’s also used to increase network capacity or relieve network congestion. collapse


Product Data Sheets (pdf)...High-Density Media Converter System II

  • Manual... 
  • MultiPower Miniature Media Converter, SFP-to-SFP Mode Converter
    (Version 1)
 

Black Box Explains…Media converters that also work as switches.

Media converters transparently convert the incoming electrical signal from one cable type and then transmit it over another type—thick coax to Thin, UTP to fiber, and so on. Traditionally, media... more/see it nowconverters were purely Layer 1 devices that only converted electrical signals and physical media and didn’t do anything to the data coming through the link.

Today’s media converters, however, are often more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services and route Ethernet packets based on MAC address. These media converters are often called media converter switches, switching media converters, or Layer 2 media converters. They enable you to have multiple connections rather than just one simple in-and-out connection. And because they’re switches, they increase network efficiency.

Media converters are often used to connect newer 100-Mbps, Gigabit Ethernet, or ATM equipment to existing networks, which are generally 10BASE-T, 100BASE-T, or a mixture of both. They can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference.

Rent an apartment…
Media converters are available in standalone models that convert between two different media types and in chassis-based models that house many media converters in a a single chassis.

Standalone models convert between two media. But, like a small apartment, they can be outgrown.

Consider your current and future applications before selecting a media converter. A good way to anticipate future network requirements is to choose media converters that work as standalone devices but can be rackmounted if needed later.

…or buy a house.
Chassis-based or modular media converter systems are normally rackmountable and have slots to house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and they enable you to mix different media types such as 10BASE-T, 100BASE-TX, 100BASE-FX, ATM, and Gigabit modules. Although enterprise-level chassis-based systems generally have modules that can only be used in a chassis, many midrange systems feature modules that can be used individually or in a chassis. collapse

  • Manual... 
  • MultiPower Miniature Media Converters, 10-/100-/1000-Mbps Copper to 1000-Mbps Duplex Fiber Autosensi
    (Version 1)
 

Product Data Sheets (pdf)...MultiPower Miniature Media Converter

Results 1-10 of 12 1 2 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services