Loading


Categories (x) > Industrial > Converters (x)

Results 1-10 of 48 1 2 3 4 5 > 
  • Visio Stencil Drawing... 
  • Visio Stencil
    Stencil Drawings
 

Black Box Explains...UARTs at a glance.

Universal Asynchronous Receiver/Transmitters (UARTs) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help applications overcome... more/see it nowthe factors that can hinder system performance, providing maximum throughput to high-performance peripherals without slowing down CPUs.

Early UARTs such as 8250 and 16450 did not include buffering (RAM or memory). With the advent of higher-speed devices, the need for UARTs that could handle more data became critical. The first buffered UART was the 16550, which incorporates a 16-byte First In First Out (FIFO) buffer and provides greater throughput than its predecessors.

Manufacturers have been developing enhanced UARTs that continue to increase performance standards. These faster chips provide improvements such as larger buffers and increased speeds. Here are the rates of today’s common UARTs:

UART FIFO Buffer Rate Supported
16550 16-byte 115.2 kbps
16554 16-byte 115.2 kbps
16650 32-byte 460.8 kbps (burst rate)
16654 64-byte 460.8 kbps (burst rate)
16750 64-byte 460.8 kbps (burst rate)
16850 128-byte 460.8 kbps (sustained rate)
16854 128-byte 460.8 kbps (sustained rate) collapse


Product Data Sheets (pdf)...Industrial DIN Rail Converter, Repeaters, and Fiber Driver

  • Manual... 
  • Industrial RS-232↔RS-422/RS-485 DIN Rail Converter User Manual
    User Manual for the ICD105A (Version 1)
 

Product Data Sheets (pdf)...FlexPoint Modular Media Converters


Black Box Explains...UARTs and PCI buses.

Universal Asynchronous Receiver/Transmitters UARTs are designed to convert sync data from a PC bus to an async format that external I/O devices such as printers or modems use. UARTs insert... more/see it nowor remove start bits, stop bits, and parity bits in the data stream as needed by the attached PC or peripheral. They can provide maximum throughput to your high-performance peripherals without slowing down your CPU.

In the early years of PCs and single-application operating systems, UARTs interfaced directly between the CPU bus and external RS-232 I/O devices. Early UARTs did not contain any type of buffer because PCs only performed one task at a time and both PCs and peripherals were slow.

With the advent of faster PCs, higher-speed modems, and multitasking operating systems, buffering (RAM or memory) was added so that UARTs could handle more data. The first buffered UART was the 16550 UART, which incorporates a 16-byte FIFO (First In First Out) buffer and can support sustained data-transfer rates up to 115.2 kbps.

The 16650 UART features a 32-byte FIFO and can handle sustained baud rates of 460.8 kbps. Burst data rates of up to 921.6 kbps have even been achieved in laboratory tests.

The 16750 UART has a 64-byte FIFO. It also features sustained baud rates of 460.8 kbps but delivers better performance because of its larger buffer.

Used in newer PCI cards, the 16850 UART has a 128-byte FIFO buffer for each port. It features sustained baud rates of 460.8 kbps.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed peripherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

A Universal PCI (uPCI) card has connectors that work with both a newer 3.3-V power supply and motherboard and with older 5.5-V versions. collapse


Product Data Sheets (pdf)...DIN Rail Converter and Repeaters with Opto-Isolation



Product Data Sheets (pdf)...Universal RS-232 to RS-422/RS-485 Converter, Opto-Isolated


Black Box Explains...USB.

The Universal Serial Bus (USB) hardware (plug-and-play) standard makes connecting peripherals to your computer easy. USB 1.1, introduced in 1995, is the original USB standard. It has two data rates:... more/see it now12 Mbps and 1.5 Mbps. USB 2.0, or Hi-Speed USB 2.0, was released in 2000. It increased the peripheral-to-PC speed from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1. This increase in bandwidth enabled the use of peripherals requiring higher throughput, such as CD/DVD burners, scanners, digital cameras, and video equipment. It is backward-compatible with USB 1.1.

The newest USB standard, USB 3.0 (or SuperSpeed USB), (2008) provides vast improvements over USB 2.0. It promises speeds up to 4.8 Gbps, nearly ten times that of USB 2.0. USB 3.0 has the flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors.

USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus. USB 3.0 cable contains nine wires, four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional async, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. Also, USB 3.0 conserves more power when compared to USB 2.0, which uses power when the cable isn’t being used. collapse

Results 1-10 of 48 1 2 3 4 5 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services