Loading


Categories (x) > Industrial > Converters (x)

Results 1-10 of 48 1 2 3 4 5 > 
  • Manual... 
  • DIN Rail RS-232/RS-485 to Fiber Driver
    Installation and User Guide (May-04)
 

Black Box Explains...Low-profile PCI serial adapters.

Ever notice that newer computers are getting smaller and slimmer? That means regular PCI boards won’t fit into these computers’ low-profile PCI slots. But because miniaturization is the rage in... more/see it nowall matters of technology, it was only a short matter of time before low-profile PCI serial adapters became available—and Black Box has them.

Low-profile cards meet the PCI Special Interest Group (PCI-SIG) Low-Profile PCI specifications, the form-factor definitions for input/output expansion. Low-Profile PCI has two card lengths defined for 32-bit bus cards: MD1 and MD2. MD1 is the smaller of the two, with cards no larger than 4.721 inches long and 2.536 inches high. MD2 cards are a maximum of 6.6 inches long and 2.536 inches high.

BLACK BOX® Low-Profile Serial PCI cards comply with the MD1 low-profile specification and are compatible with the universal bus. Universal bus is a PCI card that can operate in either a 5-V or 3.3-V signaling level system. collapse


Product Data Sheets (pdf)...Industrial USB 2.0 DIN Rail Converters


Black Box Explains…Media converters that also work as switches.

Media converters transparently convert the incoming electrical signal from one cable type and then transmit it over another type—thick coax to Thin, UTP to fiber, and so on. Traditionally, media... more/see it nowconverters were purely Layer 1 devices that only converted electrical signals and physical media and didn’t do anything to the data coming through the link.

Today’s media converters, however, are often more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services and route Ethernet packets based on MAC address. These media converters are often called media converter switches, switching media converters, or Layer 2 media converters. They enable you to have multiple connections rather than just one simple in-and-out connection. And because they’re switches, they increase network efficiency.

Media converters are often used to connect newer 100-Mbps, Gigabit Ethernet, or ATM equipment to existing networks, which are generally 10BASE-T, 100BASE-T, or a mixture of both. They can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference.

Rent an apartment…
Media converters are available in standalone models that convert between two different media types and in chassis-based models that house many media converters in a a single chassis.

Standalone models convert between two media. But, like a small apartment, they can be outgrown.

Consider your current and future applications before selecting a media converter. A good way to anticipate future network requirements is to choose media converters that work as standalone devices but can be rackmounted if needed later.

…or buy a house.
Chassis-based or modular media converter systems are normally rackmountable and have slots to house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and they enable you to mix different media types such as 10BASE-T, 100BASE-TX, 100BASE-FX, ATM, and Gigabit modules. Although enterprise-level chassis-based systems generally have modules that can only be used in a chassis, many midrange systems feature modules that can be used individually or in a chassis. collapse



Black Box Explains...USB.

What is USB?
Universal Serial Bus (USB) is a royalty-free bus specification developed in the 1990s by leading manufacturers in the PC and telephony industries to support plug-and-play peripheral connections. USB... more/see it nowhas standardized how peripherals, such as keyboards, disk drivers, cameras, printers, and hubs) are connected to computers.

USB offers increased bandwidth, isochronous and asynchronous data transfer, and lower cost than older input/output ports. Designed to consolidate the cable clutter associated with multiple peripherals and ports, USB supports all types of computer- and telephone-related devices.

Universal Serial Bus (USB) USB detects and configures the new devices instantly.
Before USB, adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect digital printers, recorders, backup drives, and other devices in seconds. USB detects and configures the new devices instantly.

Benefits of USB.
• USB is “universal.” Almost every device today has a USB port of some type.
• Convenient plug-and-play connections. No powering down. No rebooting.
• Power. USB supplies power so you don’t have to worry about adding power. The A socket supplies the power.
• Speed. USB is fast and getting faster. The original USB 1.0 had a data rate of 1.5 Mbps. USB 3.0 has a data rate of 4.8 Gbps.

USB Standards

USB 1.1
USB 1.1, introduced in 1995, is the original USB standard. It has two data rates: 12 Mbps (Full-Speed) for devices such as disk drives that need high-speed throughput and 1.5 Mbps (Low-Speed) for devices such as joysticks that need much lower bandwidth.

USB 2.0
In 2002, USB 2.0, (High-Speed) was introduced. This version is backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1.

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as printers, cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously.

USB 3.0
USB 3.0 (SuperSpeed) (2008) provides vast improvements over USB 2.0. USB 3.0 has speeds up to 5 Gbps, nearly ten times that of USB 2.0. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus.

USB 3.0 is designed to be backward compatible with USB 2.0.

USB 3.0 Connector
USB 3.0 has a flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors. Type A plugs from USB 3.0 and 2.0 are designed to interoperate. USB 3.0 Type B plugs are larger than USB 2.0 plugs. USB 2.0 Type B plugs can be inserted into USB 3.0 receptacles, but the opposite is not possible.

USB 3.0 Cable
The USB 3.0 cable contains nine wires—four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 Power
USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It also conserves power too compared to USB 2.0, which uses power when the cable isn’t being used.

USB 3.1
Released in 2013, is called SuperSpeed USB 10 Gbps. There are three main differentiators to USB 3.1. It doubles the data rate from 5 Gbps to 10 Gbps. It will use the new, under-development Type C connector, which is far smaller and designed for use with everything from laptops to mobile phones. The Type C connector is being touted as a single-cable solution for audio, video, data, and power. It will also have a reversible plug orientation. Lastly, will have bidirectional power delivery of up to 100 watts and power auto-negotiation. It is backward compatible with USB 3.0 and 2.0, but an adapter is needed for the physical connection.

Transmission Rates
USB 3.0: 4.8 Gbps
USB 2.0: 480 Mbps
USB 1.1: 12 Mbps

Cable Length/Node
5 meters (3 meters for 3.0 devices requiring higher speeds).
Devices/bus: 127
Tier/bus: 5
collapse

  • Quick Start Guide... 
  • Industrial Opto-Isolated RS-232 to RS-422/485 Converter Quick Start Guide
    Quick Start Guide (QSG) for the ICD200A
 

Product Data Sheets (pdf)...Universal RS-232 to RS-422/RS-485 Converter, Opto-Isolated


  • Quick Start Guide... 
  • Industrial USB 2.0 Hub, 4-Port, QSG
    Quick Start Guide for the ICI104A (Version 1)
 
Results 1-10 of 48 1 2 3 4 5 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services