Loading


Categories (x) > Industrial > Cabling & Infrastructure (x)
Content Type (x) > Black Box Explains (x)

Results 21-27 of 27 < 1 2 3 

Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet (10-GbE), ratified in June 2002, is a logical extension of previous Ethernet versions. 10-GbE was designed to make the transition from LANs to Wide Area Networks (WANs) and... more/see it nowMetropolitan Area Networks (MANs). It offers a cost-effective migration for high-performance and long-haul transmissions at up to 40 kilometers. Its most common application now is as a backbone for high-speed LANs, server farms, and campuses.

10-GbE supports existing Ethernet technologies. It uses the same layers (MAC, PHY, and PMD), and the same frame sizes and formats. But the IEEE 802.3ae spec defines two sets of physical interfaces: LAN (LAN PHY) and WAN (WAN PHY). The most notable difference between 10-GbE and previous Ethernets is that 10-GbE operates in full-duplex only and specifies fiber optic media.

At a glance—Gigabit vs. 10-Gigabit Ethernet

Gigabit
• CSMA/CD + full-duplex
• Leveraged Fibre Channel PMDs
• Reused 8B/10B coding
• Optical/copper media
• Support LAN to 5 km
• Carrier extension

10-Gigabit Ethernet
• Full-duplex only
• New optical PMDs
• New coding scheme 64B/66B
• Optical (developing copper)
• Support LAN to 40 km
• Throttle MAC speed for WAN
• Use SONET/SDH as Layer 1 transport

The alphabetical coding for 10-GbE is as follows:
S = 850 nm
L = 1310 nm
E = 1550 nm
X = 8B/10B signal encoding
R = 66B encoding
W = WIS interface (for use with SONET).

10-GbE
10GBASE-SR — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-SW — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-LR — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LW — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LX4 — Distance: Multimode 300 m, Single-Mode 10 km; Wavelength: Multimode 1310 nm, Single-Mode WWDM; Cable: Multimode or Single-Mode
10GBASE-ER — Distance: 40 km; Wavelength: 1550 nm; Cable: Single-Mode
10GBASE-EW — Distance: 40 km; Wavelength: 550 nm; Cable: Single-Mode
10GBASE-CX4* — Distance: 15 m; Wavelength: Cable: 4 x Twinax
10GBASE-T* — Distance: 25–100 m; Wavelength: Cable: Twisted Pair
* Proposed for copper. collapse


Black Box Explains…Component vs. channel testing.

When using a Category 6 system, the full specification includes the testing of each part individually and in an end-to-end-channel. Because CAT6 is an open standard, products from different vendors... more/see it nowshould work together.

Channel testing includes patch cable, bulk cable, jacks, patch panels, etc. These tests cover a number of measurements, including: attenuation, NEXT, PS-NEXT, EL-FEXT, ACR, PS-ACR, EL-FEXT, PS-ELFEXT, and Return Loss. Products that are tested together should work together as specified. In theory, products from all manufacturers are interchangeable. But, if products from different manufacturers are inserted in a channel, end-to-end CAT6 performance may be compromised.

Component testing, on the other hand, is much stricter even though only two characteristics are measured: crosstalk and return loss. Although all CAT6 products should be interchangeable, products labeled as component are guaranteed to perform to a CAT6 level in a channel with products from different manufacturers.

For more information on cable, channel, and component specs, see below.

Buyer’s Guide: CAT5e vs. CAT6 Cable

Standard — CAT5e: TIA-568-B.2; CAT6: TIA-568-B.2-1

Frequency — CAT5e: 100 MHz; CAT6: 250 MHz

Attenuation (maximum at 100 MHz) —
Cable: CAT5e: 22 dB; CAT6: 19.8 dB
Connector: CAT5e: 0.4 dB; CAT6: 0.2 dB
Channel: CAT5e: 24.0 dB; CAT6: 21.3 dB

NEXT (minimum at 100 MHz) —
Cable: CAT5e: 35.3 dB; CAT6: 44.3 dB
Connector: CAT5e: 43.0 dB; CAT6: 54.0 dB
Channel: CAT5e: 30.1 dB; CAT6: 39.9 dB

PS-NEXT (minimum at 100 MHz) — 32.3 dB 42.3 dB

EL-FEXT (minimum at 100 MHz) —
Cable: CAT5e: 23.8 dB; CAT6: 27.8 dB
Connector: CAT5e: 35.1 dB; CAT6: 43.1 dB
Channel: CAT5e: 17.4 dB; CAT6: 23.3 dB

PS-ELFEXT (minimum at 100 MHz) — CAT5e: 20.8 dB; CAT6: 24.8 dB

Return Loss (minimum at 100 MHz) —
Cable: CAT5e: 20.1 dB; CAT6: 20.1 dB
Connector: CAT5e: 20.0 dB: CAT6: 24.0 dB
Channel: CAT5e: 10.0 dB; CAT6: 12.0 dB

Characteristic Impedance — Both: 100 ohms ± 15%

Delay Skew (maximum per 100 m) — Both: 45 ns

NOTE: In Attenuation testing, the lower the number, the better. In NEXT, EL-FEXT, and Return Loss testing, the higher the number, the better. collapse


Black Box Explains...Connectors.



Click on the image below for a larger view.


Black Box Explains... Pulling eyes and fiber cable.

Fiber optic cable can be damaged if pulled improperly. Broken or cracked fiber, for example, can result from pulling on the fiber core or jacket instead of the strength member.... more/see it nowAnd too much tension or stress on the jacket, as well as too tight of a bend radius, can damage the fiber core. If the cable’s core is harmed, the damage can be difficult to detect.

Once the cable is pulled successfully, damage can still occur during the termination phase. Field termination can be difficult and is often done incorrectly, resulting in poor transmission. One way to eliminate field termination is to pull preterminated cable. But this can damage the cable as well because the connectors can be knocked off during the pulling process. The terminated cable may also be too bulky to fit through ducts easily. To help solve all these problems, use preterminated fiber optic cable with a pulling eye. This works best for runs up to 2000 feet (609.6 m).

The pulling eye contains a connector and a flexible, multiweave mesh-fabric gripping tube. The latched connector is attached internally to the Kevlar®, which absorbs most of the pulling tension. Additionally, the pulling eye’s mesh grips the jacket over a wide surface area, distributing any remaining pulling tension and renders it harmless. The end of the gripping tube features one of three different types of pulling eyes: swivel, flexible, or breakaway.

Swivel eyes enable the cable to go around bends without getting tangled. They also prevent twists in the pull from being transferred to the cable. A flexible eye follows the line of the pull around corners and bends, but it’s less rigid. A breakaway eye offers a swivel function but breaks if the tension is too great. We recommend using the swivel-type pulling eye.

A pulling eye enables all the fibers to be preterminated to ensure better performance. The terminated fibers are staggered inside the gripping tube to minimize the diameter of the cable. This enables the cable to be pulled through the conduit more easily. collapse


Black Box Explains...What to look for in a channel solution.


Channel solution. You hear the term a lot these days to describe complete copper or fiber cabling systems. But what exactly is a channel solution and what are its benefits?... more/see it now

A definition.
A channel solution is a cabling system from the data center to the desktop where every cable, jack, and patch panel is designed to work together and give you consistent end-to-end performance when compared with the EIA/TIA requirements.

Its benefits.
A channel solution is beneficial because you have some assurance that your cabling components will perform as specified. Without that assurance, one part may not be doing its job, so your entire system may not be performing up to standard, which is a problem — especially if you rely on bandwidth-heavy links for video and voice.

What to look for.
There are a lot of channel solutions advertised on the Internet and elsewhere. So what exactly should you be looking for?

For one, make sure it’s a fully tested, guaranteed channel solution. The facts show an inferior cabling system can cause up to 70 percent of network downtime — even though it usually represents only 5 percent of an initial network investment. So don’t risk widespread failure by skimping on a system that doesn’t offer guaranteed channel performance. You need to make sure the products are engineered to meet or go beyond the key measurements for CAT5e or CAT6 performance.

And, sure, they may be designed to work together, but does the supplier absolutely guarantee how well they perform as part of a channel — end to end? Don’t just rely on what the supplier says. They may claim their products meet CAT5e or CAT6 requirements, but the proof is in the performance. Start by asking if the channel solution is independently tested and certified by a reputable third party. There are a lot of suppliers out there who don’t have the trademarked ETL approval logo, for example.

What ETL Verified means.
The ETL logo certifies that a channel solution has been found to be in compliance with recognized standards. To ensure consistent top quality, Black Box participates in independent third-party testing by InterTek Testing Services/ETL Semko, Inc. Once a quarter, an Intertek inspector visits Black Box and randomly selects cable and cabling products for testing.

The GigaTrue® CAT6 and GigaBase® CAT5e Solid Bulk Cable are ETL Verified at the component level to verify that they conform to the applicable industry standards. The GigaTrue® CAT6 and GigaBase® CAT5e Channels, consisting of bulk cable, patch cable, jacks, patch panels, and wiring blocks, are tested and verified according to industry standards in a LAN environment under InterTek’s Cabling System Channel Verification Program. For the latest test results, contact our FREE Tech Support. collapse


Black Box Explains... Guidelines for choosing fiber optic cable.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. It’s favored for applications that... more/see it nowneed high bandwidth, long distances, and complete immunity to electrical interference.

It’s ideal for high-data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances.

Fiber offers the following advantages:

Greater bandwidth—Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase.

Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber and many CATV companies are converting to fiber.

Low attenuation and greater distance—Because the fiber optic signal is made of light, very little signal loss occurs during transmission, and data can move at higher speeds and greater distances. Fiber does not have the 100-meter (328-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters (984.2 ft.) to 40 kilometers (24.8 mi.), depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.

Security—Your data is safe with fiber cable. It doesn’t radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the physical security of your fiber system, you’ll know it.

Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.

Immunity and reliability—Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The core is made of glass, which is an insulator, so no electric current can flow through. It’s immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper and can be submerged in water.

Design—Fiber is lightweight, thin, and more durable than copper cable. Plus, fiber optic cable has pulling specifications that are up to 10 times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper, advancements in connectors are making termination easier. In addition, fiber is actually easier to test than copper cable.

Migration—The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.

Standards—TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). An addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet (10-GbE) standard.

Costs—The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.

Types of fiber cable and standards.

Multimode, 50- and 62.5-micron cable—Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be used for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable—Single-mode cable has a small 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber. collapse


Black Box Explains...HDBaseT

HDBaseT is a connectivity standard for distribution of uncompressed HD multimedia content. HDBaseT technology converges full HD digital video, audio, 100BaseT Ethernet, power over cable, and various control signals through... more/see it nowa single LAN cable. This is referred to as 5Play™, a feature set that sets HDBaseT technology above the current standard.

Video
HDBaseT delivers full HD/3D and 2K/4K uncompressed video to a network of devices or to a single device (point-to-point). HDBaseT supports all key HDMI 1.4 features, including EPG, Consumer Electronic Controls (CEC), EDID, and HDCP. The unique video coding scheme ensure the highest video quality at zero latency.

Audio
As with the video, HDBaseT audio is passed through from the HDMI chipset. All standard formats are supported, including Dolby Digital, DTS, Dolby TrueHD, DTS HD-Master Audio.

Ethernet
HDBaseT supports 100Mb Ethernet, which enables communications between electronic devices including televisions, sound systems, computers, and more. Additionally, Ethernet support enables access to any stored multimedia content (such as video or music streaming).

Control
HDBaseT's wide range of control options include CEC, RS-232, and infrared (IR). IP control is enabled through Ethernet channel support.

Power
The same cable that delivers video, audio, Ethernet, and control can deliver up to 100W of DC power. This means users can place equipment where one wants to, not just those locations with an available power source. HDBaseT Architecture
HDBaseT sends video, audio, Ethernet, and control from the source to the display, but only transfers 100Mb of data from display to source (Ethernet and control data). The asymmetric nature of HDBaseT is based on a digital signal processing (DSP) engine and an application front end (AFE) architecture.

HDBaseT uses a proprietary version of Pulse Amplitude Modulation (PAM) technology, where digital data is represented as a coding scheme using different levels of DC voltage at high rates. This special coding provides a better transfer quality to some kinds of data without the need to "pay" the protecting overhead for the video content, which consumes most of the bandwidth. HDBaseT PAM technology enables the 5Play feature-set to be maintained over a single 330-foot (100 m) CAT cable without the electrical characteristics of the wire affecting performance.

collapse

Results 21-27 of 27 < 1 2 3 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services