Loading


Categories (x) > Industrial > Cabling & Infrastructure (x)
Content Type (x) > Black Box Explains (x)

Results 11-20 of 27 < 1 2 3 > 

Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.
collapse


Black Box Explains...Ceramic and composite ferrules.

Cables manufactured with ceramic ferrules are ideal for mission-critical applications or connections that are changed frequently. These cables are high quality and typically have a very long life. Ceramic ferrules... more/see it noware more precisely molded and fit closer to the fiber than their composite counterparts, which gives them a lower optical loss.

On the other hand, cables with composite ferrules are ideal for less critical applications or connections that won’t be changed frequently. Composite ferrule cables are characterized by low loss, good quality, and long life. collapse


Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse


Black Box Explains...What to look for in a channel solution.


Channel solution. You hear the term a lot these days to describe complete copper or fiber cabling systems. But what exactly is a channel solution and what are its benefits?... more/see it now

A definition.
A channel solution is a cabling system from the data center to the desktop where every cable, jack, and patch panel is designed to work together and give you consistent end-to-end performance when compared with the EIA/TIA requirements.

Its benefits.
A channel solution is beneficial because you have some assurance that your cabling components will perform as specified. Without that assurance, one part may not be doing its job, so your entire system may not be performing up to standard, which is a problem — especially if you rely on bandwidth-heavy links for video and voice.

What to look for.
There are a lot of channel solutions advertised on the Internet and elsewhere. So what exactly should you be looking for?

For one, make sure it’s a fully tested, guaranteed channel solution. The facts show an inferior cabling system can cause up to 70 percent of network downtime — even though it usually represents only 5 percent of an initial network investment. So don’t risk widespread failure by skimping on a system that doesn’t offer guaranteed channel performance. You need to make sure the products are engineered to meet or go beyond the key measurements for CAT5e or CAT6 performance.

And, sure, they may be designed to work together, but does the supplier absolutely guarantee how well they perform as part of a channel — end to end? Don’t just rely on what the supplier says. They may claim their products meet CAT5e or CAT6 requirements, but the proof is in the performance. Start by asking if the channel solution is independently tested and certified by a reputable third party. There are a lot of suppliers out there who don’t have the trademarked ETL approval logo, for example.

What ETL Verified means.
The ETL logo certifies that a channel solution has been found to be in compliance with recognized standards. To ensure consistent top quality, Black Box participates in independent third-party testing by InterTek Testing Services/ETL Semko, Inc. Once a quarter, an Intertek inspector visits Black Box and randomly selects cable and cabling products for testing.

The GigaTrue® CAT6 and GigaBase® CAT5e Solid Bulk Cable are ETL Verified at the component level to verify that they conform to the applicable industry standards. The GigaTrue® CAT6 and GigaBase® CAT5e Channels, consisting of bulk cable, patch cable, jacks, patch panels, and wiring blocks, are tested and verified according to industry standards in a LAN environment under InterTek’s Cabling System Channel Verification Program. For the latest test results, contact our FREE Tech Support. collapse


Black Box Explains...Giga, Giga2, and Giga Plus—what you need to know.

Our Giga, Giga2, and Giga Plus and systems feature jacks, wallplates, surface-mount boxes, and other accessories. Components of each system are designed to work together. And they all work with... more/see it nowour GigaTrue® CAT6 and GigaBase® CAT5e cable. Here are the differences between the systems so you can make the right decision when choosing hardware.

Giga

  • Giga products are our original line of jacks, wallplates, etc.
  • Giga products, such as jacks and wallplates, are designed to work with Giga products.
  • To meet the needs of existing Giga systems, we continue to carry Giga products.

  • Giga2
  • Giga2 products are a newer line. They offer the same quality but are priced economically.
  • Giga2 products, such as jacks and wallplates, are designed to work with Giga2 products.

  • Giga Plus
  • Giga Plus is our newest line and is entirely made in the U.S. So if you need to buy American-made products, choose this line.
  • Giga Plus products are designed to work with Giga2 products.
  • collapse


    Black Box Explains...Category wiring standards

    The ABCs of standards
    There are two primary organizations dedicated to developing and setting structured cabling standards. In North America, standards are issued by the Telecommunications Industry Association (TIA),... more/see it nowwhich is accredited by the American National Standards Institute (ANSI). The TIA was formed in April 1988 after a merger with the Electronics Industry Association (EIA). That’s why its standards are commonly known as ANSI/TIA/EIA, TIA/EIA, or TIA.

    Globally, the organizations that issue standards are the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO). Standards are often listed as ISO/IEC. Other organizations include the Canadian Standards Association (CSA), CENELEC (European Committee for Electrotechnical Standardizations), and the Japanese Standards Association (JSA/JSI).

    The committees of all these organizations work together and the performance requirements of the standards are very similar. But there is some confusion in terminology.

    The TIA cabling components (cables, connecting hardware, and patch cords) are labeled with a ”category.” These components together form a permanent link or channel that is also called a ”category.” The ISO/IEC defines the link and channel requirements with a ”class” designation. But the components are called a ”category.”

    The standards
    Category 5 (CAT5) —ratified in 1991. It is no longer recognized for use in networking.

    Category 5e (CAT5e), ISO/IEC 11801 Class D, ratified in 1999, is designed to support full-duplex, 4-pair transmission in 100-MHz applications. The CAT5e standard introduced the measurement for PS-NEXT, EL-FEXT, and PS-ELFEXT. CAT5e is no longer recognized for new installations. It is commonly used for 1-GbE installations.

    Category 6 (CAT6) – Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

    10-GbE over CAT6 introduces Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TIA TSB-155-A and ISO/IEC 24750 qualifies 10-GbE over CAT6 over channels of 121 to 180 feet (37 to 55 meters) and requires it to be 100% tested, which is extremely time consuming. To mitigate ANEXT in CAT6, it is recommended that the cables be unbundled, that the space between cables be increased, and that non-adjacent patch panel ports be used. If CAT6 F/UTP cable is used, mitigation is not necessary and the length limits do not apply. CAT6 is not recommended for new 10-GbE installations.

    Augmented Category 6 (CAT6A) –Class Ea was ratified in February 2008. This standard calls for 10-Gigabit Ethernet data transmission over a 4-pair copper cabling system up to 100 meters. CAT6A extends CAT6 electrical specifications from 250 MHz to 500 MHz. It introduces the ANEXT requirement. It also replaces the term Equal Level Far-End Crosstalk (ELFEXT) with Attenuation to Crosstalk Ratio, Far-End (ACRF) to mesh with ISO terminology. CAT6A provides improved insertion loss over CAT6. It is a good choice for noisy environments with lots of EMI. CAT6A is also well-suited for use with PoE+.

    CAT6A UTP cable is significantly larger than CAT6 cable. It features larger conductors, usually 22 AWG, and is designed with more space between the pairs to minimize ANEXT. The outside diameter of CAT6A cable averages 0.29"–0.35" compared to 0.21"–0.24" for CAT6 cable. This reduces the number of cables you can fit in a conduit. At a 40% fill ratio, you can run three CAT6A cables in a 3/4" conduit vs. five CAT6 cables.

    CAT6A UTP vs. F/UTP. Although shielded cable has the reputation of being bigger, bulkier, and more difficult to handle and install than unshielded cable, this is not the case with CAT6A F/UTP cable. It is actually easier to handle, requires less space to maintain proper bend radius, and uses smaller conduits, cable trays, and pathways. CAT6A UTP has a larger outside diameter than CAT6A F/UTP cable. This creates a great difference in the fill rate of cabling pathways. An increase in the outside diameter of 0.1", from 0.25" to 0.35" for example, represents a 21% increase in fill volume. In general, CAT6A F/UTP provides a minimum of 35% more fill capacity than CAT6A UTP. In addition, innovations in connector technology have made terminating CAT6A F/UTP actually easier than terminating bulkier CAT6A UTP.

    Category 7 (CAT7) –Class F was published in 2002 by the ISO/IEC. It is not a TIA recognized standard and TIA plans to skip over it.

    Category 7 specifies minimum performance standards for fully shielded cable (individually shielded pairs surrounded by an overall shield) transmitting data at rates up to 600 MHz. It comes with one of two connector styles: the standard RJ plug and a non-RJ-style plug and socket interface specified in IEC 61076-2-104:2.

    Category 7a (CAT7a) –Class Fa (Amendment 1 and 2 to ISO/IEC 11801, 2nd Ed.) is a fully shielded cable that extends frequency from 600 MHz to 1000 MHz.

    Category 8 – The TIA decided to skip Category 7 and 7A and go to Category 8. The TR-42.7 subcommittee is establishing specs for a 40-Gbps twisted-pair solution with a 2-GHz frequency. The proposed standard is for use in a two-point channel in a data center at 30 meters. It is expected to be ratified in February 2016. The TR-42.7 subcommittee is also incorporating ISO/IEC Class II cabling performance criteria into the standard. It is expected to be called TIA-568-C.2-1. The difference between Class I and Class II is that Class II allows for three different styles of connectors that are not compatible with one another or with the RJ-45 connector. Class I uses an RJ-45 connector and is backward compatible with components up to Category 6A. collapse


    Black Box Explains... Pulling eyes and fiber cable.

    Fiber optic cable can be damaged if pulled improperly. Broken or cracked fiber, for example, can result from pulling on the fiber core or jacket instead of the strength member.... more/see it nowAnd too much tension or stress on the jacket, as well as too tight of a bend radius, can damage the fiber core. If the cable’s core is harmed, the damage can be difficult to detect.

    Once the cable is pulled successfully, damage can still occur during the termination phase. Field termination can be difficult and is often done incorrectly, resulting in poor transmission. One way to eliminate field termination is to pull preterminated cable. But this can damage the cable as well because the connectors can be knocked off during the pulling process. The terminated cable may also be too bulky to fit through ducts easily. To help solve all these problems, use preterminated fiber optic cable with a pulling eye. This works best for runs up to 2000 feet (609.6 m).

    The pulling eye contains a connector and a flexible, multiweave mesh-fabric gripping tube. The latched connector is attached internally to the Kevlar®, which absorbs most of the pulling tension. Additionally, the pulling eye’s mesh grips the jacket over a wide surface area, distributing any remaining pulling tension and renders it harmless. The end of the gripping tube features one of three different types of pulling eyes: swivel, flexible, or breakaway.

    Swivel eyes enable the cable to go around bends without getting tangled. They also prevent twists in the pull from being transferred to the cable. A flexible eye follows the line of the pull around corners and bends, but it’s less rigid. A breakaway eye offers a swivel function but breaks if the tension is too great. We recommend using the swivel-type pulling eye.

    A pulling eye enables all the fibers to be preterminated to ensure better performance. The terminated fibers are staggered inside the gripping tube to minimize the diameter of the cable. This enables the cable to be pulled through the conduit more easily. collapse


    Black Box Explains...10-Gigabit Ethernet.

    10-Gigabit Ethernet (10-GbE), ratified in June 2002, is a logical extension of previous Ethernet versions. 10-GbE was designed to make the transition from LANs to Wide Area Networks (WANs) and... more/see it nowMetropolitan Area Networks (MANs). It offers a cost-effective migration for high-performance and long-haul transmissions at up to 40 kilometers. Its most common application now is as a backbone for high-speed LANs, server farms, and campuses.

    10-GbE supports existing Ethernet technologies. It uses the same layers (MAC, PHY, and PMD), and the same frame sizes and formats. But the IEEE 802.3ae spec defines two sets of physical interfaces: LAN (LAN PHY) and WAN (WAN PHY). The most notable difference between 10-GbE and previous Ethernets is that 10-GbE operates in full-duplex only and specifies fiber optic media.

    At a glance—Gigabit vs. 10-Gigabit Ethernet

    Gigabit
    • CSMA/CD + full-duplex
    • Leveraged Fibre Channel PMDs
    • Reused 8B/10B coding
    • Optical/copper media
    • Support LAN to 5 km
    • Carrier extension

    10-Gigabit Ethernet
    • Full-duplex only
    • New optical PMDs
    • New coding scheme 64B/66B
    • Optical (developing copper)
    • Support LAN to 40 km
    • Throttle MAC speed for WAN
    • Use SONET/SDH as Layer 1 transport

    The alphabetical coding for 10-GbE is as follows:
    S = 850 nm
    L = 1310 nm
    E = 1550 nm
    X = 8B/10B signal encoding
    R = 66B encoding
    W = WIS interface (for use with SONET).

    10-GbE
    10GBASE-SR — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
    10GBASE-SW — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
    10GBASE-LR — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
    10GBASE-LW — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
    10GBASE-LX4 — Distance: Multimode 300 m, Single-Mode 10 km; Wavelength: Multimode 1310 nm, Single-Mode WWDM; Cable: Multimode or Single-Mode
    10GBASE-ER — Distance: 40 km; Wavelength: 1550 nm; Cable: Single-Mode
    10GBASE-EW — Distance: 40 km; Wavelength: 550 nm; Cable: Single-Mode
    10GBASE-CX4* — Distance: 15 m; Wavelength: Cable: 4 x Twinax
    10GBASE-T* — Distance: 25–100 m; Wavelength: Cable: Twisted Pair
    * Proposed for copper. collapse


    Black Box Explains…OM3 and OM4.

    There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

    OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

    OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

    OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

    OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

    OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
    850 nm High Performance EMB (MHz/km)

    OM3: 2000

    OM4: 4700


    850-nm Ethernet Distance
    1-GbE
    OM3: 1000 m

    OM4: 1000 m


    10-GbE
    OM3: 300 m

    OM4: 550 m


    40-GbE
    OM3: 100 m

    OM4: 150 m


    100-GbE
    OM3: 100 m

    OM4: 150 m

    collapse


    Black Box Explains...Breakout-style cables.

    With breakout- or fanout-style cables, the fibers are packaged individually. A breakout cable is basically several simplex cables bundled together in one jacket. Breakout cables are suitable for riser and... more/see it nowplenum applications, and conduit runs.

    This differs from distribution-style cables where several tight-buffered fibers are bundled under the same jacket.

    This design of the breakout cable adds strength to the cable, although that makes it larger and more expensive than distribution-style cables.

    Because each fiber is individually reinforced, you can divide the cable into individual fiber lines. This enables quick connector termination, and eliminates the need for patch panels.

    Breakout cable can also be more economical because it requires much less labor to terminate.

    You may want to choose a cable that has more fibers than you actually need in case of breakage during termination or for future expansion. collapse

    Results 11-20 of 27 < 1 2 3 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Print
    Black Box 1-877-877-2269 Black Box Network Services