Loading


Categories (x) > Industrial > Cabling & Infrastructure (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 27 1 2 3 > 

Black Box Explains...How fiber is insulated for use in harsh environments.

Fiber optic cable not only gives you immunity to interference and greater signal security, but it’s also constructed to insulate the fiber’s core from the stress associated with use in... more/see it nowharsh environments.

The core is a very delicate channel that’s used to transport data signals from an optical transmitter to an optical receiver. To help reinforce the core, absorb shock, and provide extra protection against cable bends, fiber cable contains a coating of acrylate plastic.

In an environment free from the stress of external forces such as temperature, bends, and splices, fiber optic cable can transmit light pulses with minimal attenuation. And although there will always be some attenuation from external forces and other conditions, there are two methods of cable construction to help isolate the core: loose-tube and tight-buffer construction.

In a loose-tube construction, the fiber core literally floats within a plastic gel-filled sleeve. Surrounded by this protective layer, the core is insulated from temperature extremes, as well as from damaging external forces such as cutting and crushing.

In a tight-core construction, the plastic extrusion method is used to apply a protective coating directly over the fiber coating. This helps the cable withstand even greater crushing forces. But while the tight-buffer design offers greater protection from core breakage, it’s more susceptible to stress from temperature variations. Conversely, while it’s more flexible than loose-tube cable, the tight-buffer design offers less protection from sharp bends or twists. collapse


Black Box Explains...Ceramic and composite ferrules.

Cables manufactured with ceramic ferrules are ideal for mission-critical applications or connections that are changed frequently. These cables are high quality and typically have a very long life. Ceramic ferrules... more/see it noware more precisely molded and fit closer to the fiber than their composite counterparts, which gives them a lower optical loss.

On the other hand, cables with composite ferrules are ideal for less critical applications or connections that won’t be changed frequently. Composite ferrule cables are characterized by low loss, good quality, and long life. collapse


Black Box Explains...Category 6.

Category 6 (CAT6)–Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. In recent years, it has been the... more/see it nowcable of choice for new structured cabling systems. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces the problem of Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TSB-155 qualifies 10-GbE over CAT6 up to 55 meters and requires it to be 100% tested. To mitigate ANEXT in CAT6, it is recommended that you unbundle the cables and increase the separation between the cables.

You can always contact Black Box Tech Support to answer your cabling questions. Our techs can recommend cable testers and steer you in the right direction when you’re installing new cabling. And the advice is FREE! collapse


Black Box Explains...50-micron vs. 62.5-micron fiber optic cable.

The background
As today’s networks expand, the demand for more bandwidth and greater distances increases. Gigabit Ethernet and the emerging 10 Gigabit Ethernet are becoming the applications of choice for current... more/see it nowand future networking needs. Thus, there is a renewed interest in 50-micron fiber optic cable.

First used in 1976, 50-micron cable has not experienced the widespread use in North America that 62.5-micron cable has.

To support campus backbones and horizontal runs over 10-Mbps Ethernet, 62.5 fiber, introduced in 1986, was and still is the predominant fiber optic cable because it offers high bandwidth and long distance.

One reason 50-micron cable did not gain widespread use was because of the light source. Both 62.5 and 50-micron fiber cable can use either LED or laser light sources. But in the 1980s and 1990s, LED light sources were common. Since 50-micron cable has a smaller aperture, the lower power of the LED light source caused a reduction in the power budget compared to 62.5-micron cable—thus, the migration to 62.5-micron cable. At that time, laser light sources were not highly developed and were rarely used with 50-micron cable—mostly in research and technological applications.

Common ground
The cables share many characteristics. Although 50-micron fiber cable features a smaller core, which is the light-carrying portion of the fiber, both 50- and 62.5-micron cable use the same glass cladding diameter of 125 microns. Because they have the same outer diameter, they’re equally strong and are handled in the same way. In addition, both types of cable are included in the TIA/EIA 568-B.3 standards for structured cabling and connectivity.

As with 62.5-micron cable, you can use 50-micron fiber in all types of applications: Ethernet, FDDI, 155-Mbps ATM, Token Ring, Fast Ethernet, and Gigabit Ethernet. It is recommended for all premise applications: backbone, horizontal, and intrabuilding connections, and it should be considered especially for any new construction and installations. IT managers looking at the possibility of 10 Gigabit Ethernet and future scalability will get what they need with 50-micron cable.

Gaining ground
The big difference between 50-micron and 62.5-micron cable is in bandwidth. The smaller 50-micron core provides a higher 850-nm bandwidth, making it ideal for inter/intrabuilding connections. 50-micron cable features three times the bandwidth of standard 62.5-micron cable. At 850-nm, 50-micron cable is rated at 500 MHz/km over 500 meters versus 160 MHz/km for 62.5-micron cable over 220 meters.

Fiber Type: 62.5/125 µm
Minimum Bandwidth (MHz-km): 160/500
Distance at 850 nm: 220 m
Distance at 1310 nm: 500 m

Fiber Type: 50/125 µm
Minimum Bandwidth (MHz-km): 500/500
Distance at 850 nm: 500 m
Distance at 1310 nm: 500 m

As we move towards Gigabit Ethernet, the 850-nm wavelength is gaining importance along with the development of improved laser technology. Today, a lower-cost 850-nm laser, the Vertical-Cavity Surface-Emitting Laser (VCSEL), is becoming more available for networking. This is particularly important because Gigabit Ethernet specifies a laser light source.

Other differences between the two types of cable include distance and speed. The bandwidth an application needs depends on the data transmission rate. Usually, data rates are inversely proportional to distance. As the data rate (MHz) goes up, the distance that rate can be sustained goes down. So a higher fiber bandwidth enables you to transmit at a faster rate or for longer distances. In short, 50-micron cable provides longer link lengths and/or higher speeds in the 850-nm wavelength. For example, the proposed link length for 50-micron cable is 500 meters in contrast with 220 meters for 62.5-micron cable.

Migration
Standards now exist that cover the migration of 10-Mbps to 100-Mbps or 1 Gigabit Ethernet at the 850-nm wavelength. The most logical solution for upgrades lies in the connectivity hardware. The easiest way to connect the two types of fiber in a network is through a switch or other networking “box.“ It is not recommended to connect the two types of fiber directly. collapse


Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse


Black Box Explains...Solid vs. stranded cable.

Solid-conductor cable is designed for backbone and horizontal cable runs. Use it for runs between two wiring closets or from the wiring closet to a wallplate. Solid cable shouldn’t be... more/see it nowbent, flexed, or twisted repeatedly. Its attenuation is lower than that of stranded-conductor cable.

Stranded cable is for use in shorter runs between network interface cards (NICs) and wallplates or between concentrators and patch panels, hubs, and other rackmounted equipment. Stranded-conductor cable is much more flexible than solid-core cable. However, attenuation is higher in stranded-conductor cable, so the total length of stranded cable in your system should be kept to a minimum to reduce signal degradation. collapse


Black Box Explains... Pulling eyes and fiber cable.

Fiber optic cable can be damaged if pulled improperly. Broken or cracked fiber, for example, can result from pulling on the fiber core or jacket instead of the strength member.... more/see it nowAnd too much tension or stress on the jacket, as well as too tight of a bend radius, can damage the fiber core. If the cable’s core is harmed, the damage can be difficult to detect.

Once the cable is pulled successfully, damage can still occur during the termination phase. Field termination can be difficult and is often done incorrectly, resulting in poor transmission. One way to eliminate field termination is to pull preterminated cable. But this can damage the cable as well because the connectors can be knocked off during the pulling process. The terminated cable may also be too bulky to fit through ducts easily. To help solve all these problems, use preterminated fiber optic cable with a pulling eye. This works best for runs up to 2000 feet (609.6 m).

The pulling eye contains a connector and a flexible, multiweave mesh-fabric gripping tube. The latched connector is attached internally to the Kevlar®, which absorbs most of the pulling tension. Additionally, the pulling eye’s mesh grips the jacket over a wide surface area, distributing any remaining pulling tension and renders it harmless. The end of the gripping tube features one of three different types of pulling eyes: swivel, flexible, or breakaway.

Swivel eyes enable the cable to go around bends without getting tangled. They also prevent twists in the pull from being transferred to the cable. A flexible eye follows the line of the pull around corners and bends, but it’s less rigid. A breakaway eye offers a swivel function but breaks if the tension is too great. We recommend using the swivel-type pulling eye.

A pulling eye enables all the fibers to be preterminated to ensure better performance. The terminated fibers are staggered inside the gripping tube to minimize the diameter of the cable. This enables the cable to be pulled through the conduit more easily. collapse


Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet (10-GbE), ratified in June 2002, is a logical extension of previous Ethernet versions. 10-GbE was designed to make the transition from LANs to Wide Area Networks (WANs) and... more/see it nowMetropolitan Area Networks (MANs). It offers a cost-effective migration for high-performance and long-haul transmissions at up to 40 kilometers. Its most common application now is as a backbone for high-speed LANs, server farms, and campuses.

10-GbE supports existing Ethernet technologies. It uses the same layers (MAC, PHY, and PMD), and the same frame sizes and formats. But the IEEE 802.3ae spec defines two sets of physical interfaces: LAN (LAN PHY) and WAN (WAN PHY). The most notable difference between 10-GbE and previous Ethernets is that 10-GbE operates in full-duplex only and specifies fiber optic media.

At a glance—Gigabit vs. 10-Gigabit Ethernet

Gigabit
• CSMA/CD + full-duplex
• Leveraged Fibre Channel PMDs
• Reused 8B/10B coding
• Optical/copper media
• Support LAN to 5 km
• Carrier extension

10-Gigabit Ethernet
• Full-duplex only
• New optical PMDs
• New coding scheme 64B/66B
• Optical (developing copper)
• Support LAN to 40 km
• Throttle MAC speed for WAN
• Use SONET/SDH as Layer 1 transport

The alphabetical coding for 10-GbE is as follows:
S = 850 nm
L = 1310 nm
E = 1550 nm
X = 8B/10B signal encoding
R = 66B encoding
W = WIS interface (for use with SONET).

10-GbE
10GBASE-SR — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-SW — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-LR — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LW — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LX4 — Distance: Multimode 300 m, Single-Mode 10 km; Wavelength: Multimode 1310 nm, Single-Mode WWDM; Cable: Multimode or Single-Mode
10GBASE-ER — Distance: 40 km; Wavelength: 1550 nm; Cable: Single-Mode
10GBASE-EW — Distance: 40 km; Wavelength: 550 nm; Cable: Single-Mode
10GBASE-CX4* — Distance: 15 m; Wavelength: Cable: 4 x Twinax
10GBASE-T* — Distance: 25–100 m; Wavelength: Cable: Twisted Pair
* Proposed for copper. collapse


Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.
collapse


Black Box Explains...What to look for in a channel solution.


Channel solution. You hear the term a lot these days to describe complete copper or fiber cabling systems. But what exactly is a channel solution and what are its benefits?... more/see it now

A definition.
A channel solution is a cabling system from the data center to the desktop where every cable, jack, and patch panel is designed to work together and give you consistent end-to-end performance when compared with the EIA/TIA requirements.

Its benefits.
A channel solution is beneficial because you have some assurance that your cabling components will perform as specified. Without that assurance, one part may not be doing its job, so your entire system may not be performing up to standard, which is a problem — especially if you rely on bandwidth-heavy links for video and voice.

What to look for.
There are a lot of channel solutions advertised on the Internet and elsewhere. So what exactly should you be looking for?

For one, make sure it’s a fully tested, guaranteed channel solution. The facts show an inferior cabling system can cause up to 70 percent of network downtime — even though it usually represents only 5 percent of an initial network investment. So don’t risk widespread failure by skimping on a system that doesn’t offer guaranteed channel performance. You need to make sure the products are engineered to meet or go beyond the key measurements for CAT5e or CAT6 performance.

And, sure, they may be designed to work together, but does the supplier absolutely guarantee how well they perform as part of a channel — end to end? Don’t just rely on what the supplier says. They may claim their products meet CAT5e or CAT6 requirements, but the proof is in the performance. Start by asking if the channel solution is independently tested and certified by a reputable third party. There are a lot of suppliers out there who don’t have the trademarked ETL approval logo, for example.

What ETL Verified means.
The ETL logo certifies that a channel solution has been found to be in compliance with recognized standards. To ensure consistent top quality, Black Box participates in independent third-party testing by InterTek Testing Services/ETL Semko, Inc. Once a quarter, an Intertek inspector visits Black Box and randomly selects cable and cabling products for testing.

The GigaTrue® CAT6 and GigaBase® CAT5e Solid Bulk Cable are ETL Verified at the component level to verify that they conform to the applicable industry standards. The GigaTrue® CAT6 and GigaBase® CAT5e Channels, consisting of bulk cable, patch cable, jacks, patch panels, and wiring blocks, are tested and verified according to industry standards in a LAN environment under InterTek’s Cabling System Channel Verification Program. For the latest test results, contact our FREE Tech Support. collapse

Results 1-10 of 27 1 2 3 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services