Loading


Categories (x) > Digital Signage (x)

Results 51-60 of 97 << < 6 7 8 9 10 > 
  • Manual... 
  • MediaFlyer EXPRESS Web-Configured Digital Signage Platform Manual
    Manual for MFLY-X, MFLY-X01, MFLY-X03 and MFLY-X01RE (Version 1)
 

Black Box Explains…Digital Visual Interface (DVI) connectors.

The DVI (Digital Video Interface) technology is the standard digital transfer medium for computers while the HDMI interface is more commonly found on HDTVs, and other high-end displays.

The Digital... more/see it nowVisual Interface (DVI) standard is based on transition-minimized differential signaling (TMDS). There are two DVI formats: Single-Link and Dual-Link. Single-link cables use one TMDS-165 MHz transmitter and dual-link cables use two. The dual-link cables double the power of the transmission. A single-link cable can transmit a resolution ?of 1920 x 1200 vs. 2560 x 1600 for a dual-link cable.

There are several types of connectors: ?DVI-D, DVI-I, DVI-A, DFP, and EVC.

  • DVI-D is a digital-only connector for use between a digital video source and monitors. DVI-D eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.
  • DVI-I (integrated) supports both digital and analog RGB connections. It can transmit either a digital-to-digital signals or an analog-to-analog signal. It is used by some manufacturers on products instead of separate analog and digital connectors. If both connectors are DVI-I, you can use any DVI cable, but a DVI-I is recommended.
  • DVI-A (analog) is used to carry an DVI signal from a computer to an analog VGA device, such as a display. If one or both of your connections are DVI-A, use this cable. ?If one connection is DVI and the other is ?VGA HD15, you need a cable or adapter ?with both connectors.
  • DFP (Digital Flat Panel) was an early digital-only connector used on some displays.
  • EVC (also known as P&D, for ?Plug & Display), another older connector, handles digital and analog connections.
  • collapse


    Black Box Explains...Wireless Ethernet standards.

    IEEE 802.11
    The precursor to 802.11b, IEEE 802.11 was introduced in 1997. It was a beginning, but 802.11 only supported speeds up to 2 Mbps. And it supported two entirely different... more/see it nowmethods of encoding—Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). This led to confusion and incompatibility between different vendors’ equipment.

    IEEE 802.11b
    802.11b is comfortably established as the most popular wireless standard. With the IEEE 802.11b Ethernet standard, wireless is fast, easy, and affordable. Wireless devices from all vendors work together seamlessly. 802.11b is a perfect example of a technology that has become both sophisticated and standardized enough to really make life simpler for its users.

    The 802.11b extension of the original 802.11 standard boosts wireless throughput from 2 Mbps all the way up to 11 Mbps. 802.11b can transmit up to 200 feet under good conditions, although this distance may be reduced considerably by the presence of obstacles such as walls.

    This standard uses DSSS. With DSSS, each bit transmitted is encoded and the encoded bits are sent in parallel across an entire range of frequencies. The code used in a transmission is known only to the sending and receiving stations. By transmitting identical signals across the entire range of frequencies, DSSS helps to reduce interference and makes it possible to recover lost data without retransmission.

    IEEE 802.11a
    The 802.11a wireless Ethernet standard is new on the scene. It uses a different band than 802.11b—the 5.8-GHz band called U-NII (Unlicensed National Information Infrastructure) in the United States. Because the U-NII band has a higher frequency and a larger bandwidth allotment than the 2.4-GHz band, the 802.11a standard achieves speeds of up to 54 Mbps. However, it’s more limited in range than 802.11b. It uses an orthogonal frequency-division multiplexing (OFDM) encoding scheme rather than FHSS or DSSS.

    IEEE 802.11g
    802.11g is an extension of 802.11b and operates in the same 2.4-GHz band as 802.11b. It brings data rates up to 54 Mbps using OFDM technology.

    Because it's actually an extension of 802.11b, 802.11g is backward-compatible with 802.11b—an 802.11b device can interface directly with an 802.11g access point. However, because 802.11g also runs on the same three channels as 802.11b, it can crowd already busy frequencies.

    Super G® is a subset of 802.11g and is a proprietary extension of the 802.11g standard that doubles throughput to 108 Mbps. Super G is not an IEEE approved standard. If you use it, you should use devices from one vendor to ensure compatibility. Super G is generally backwards compatible with 802.11g.

    802.11n
    80211n improves upon 802.11g significantly with an increase in the data rate to 600 Mbps. Channels operate at 40 MHz doubling the channel width from 20 MHz. 802.11n operates on both the 2.4 GHz and the 5 GHz bands. 802.11n also added multiple-input multiple-output antennas (MIMO) collapse


    Product Data Sheets (pdf)...Video Mounts


    Black Box Explains... Speaker wire gauge.

    Wire gauge (often shown as AWG, for American Wire Gauge) is a measure of the thickness of the wire. The more a wire is drawn or sized, the smaller its... more/see it nowdiameter will be. The lower the wire gauge, the thicker the wire.

    For example, a 24 AWG wire is thinner than a 14 AWG wire. A lower AWG means longer transmission distance and better integrity. As a rule of thumb, power loss decreases as the wire size increases.

    When it comes to choosing speaker cable, consider a few factors: distance, the type of system and amplifier you have, the frequencies of the signals being handled, and any specifications that the speaker manufacturer recommends.

    For most home applications where you simply need to run cable from your stereo to speakers in the same room—or even behind the walls to other rooms—16 AWG cable is usually fine.

    If you’re considering runs of more than 40 feet (12.1 m), consider using 14 AWG or even 12 AWG cable. They both offer better transmission and less resistance over longer distances. You should probably choose 12 AWG cable for high-end audio systems with higher power output or for low-frequency subwoofers. As a rule of thumb, power loss decreases as the wire size increases.

    To terminate your cable, choose gold connectors. Because gold resists oxidation over time, gold connectors wear better and offer better peformance than other connectors do. collapse


    Black Box Explains…HDMI

    The High-Definition Multimedia Interface (HDMI®) is the first digital interface to combine uncompressed high-definition video, up to eight channels of uncompressed digital audio, and intelligent format and command data in... more/see it nowa single cable. It is now the de facto standard for consumer electronics and high-definition video and is gaining ground in the PC world.

    HDMI supports standard, enhanced, and high-definition video. It can carry video signals at resolutions up to and beyond 1080p at 60 Hz (Full HD). The latest version eve support 4K video resolutions.

    HDMI offers an easy, standardized way to set up home theaters and AV equipment over one cable. Use it to connect audio/video equipment, such as DVD players, set-top boxes, and A/V receivers with an audio and/or video equipment, such as a digital TVs, PCs, cameras, and camcorders. It also supports multiple audio formats from standard stereo to multichannel surround sound. Plus it provides two-way communications between the video source and the digital TV, enabling simple remote, point-and-click configurations.

    NOTE: HDMI also supports HDCP (High-bandwidth Digital Content Protection), which prevents the copying of digital audio and video content transmitted over HDMI able. If you have a device between the source and the display that supports HDMI but not HDCP, your transmission won't work, even over an HDMI cable.

    HDMI offers significant benefits over older analog A/V connections. It's backward compatible with DVI equipment, such as PCs. TVs, and other electronic devices using the DVI standard. A DVI-to-HDMI adapter can be used without a loss of video quality. Because DVI only supports video signals, no audio, the DVI device simply ignores the extra audio data.

    HDMI standards
    The HDMI standard was introduced in December 2002. Since then, there have been a number of versions with increasing bandwidth and/or transmission capabilities.

    With the introduction of HDMI (June 2006), more than doubled the bandwidth from 4.95 Gbps to 10.2 Gbps (340 MHz). It offers support for 16-bit color, increased refresh rates, and added support for 1440p WQXGA. It also added support for xvYCC color space and Dolby True HD and DTS-HD Master Audio standards. Plus it added features to automatically correct audio video synchronization. Finally, it added a mini connector.

    HDMI 1.3a (November 2006), HDMI 1.3b (March 2007, HDMI 1.3b1 (November 2007), and 1.3c (August 2008) added termination recommendations, control commands, and other specification for testing, etc.

    HDMI 1.4 (May 2009) increased the maximum resolution to 4Kx 2K (3840 x 2160 p/24/25/30 Hz). It added an HDMI Ethernet channel for a 100-Mbps connection between two HDMI devices. Other advancements include: an Audio Return Channel, stereoscopic 3D over HDMI (HDMI 1.3 devices will only support this for 1080i), an automotive connection system, and the micro HDMI connector.

    HDMI 1.4a (March 2010) adds two additional 3D formats for broadcast content.

    HDMI 2.0 (August 2013), which is backwards compatible with earlier versions of the HDMI specification, significantly increases bandwidth up to 18 Gbps and adds key enhancements to support market requirements for enhancing the consumer video and audio experience.

    HDMI 2.0 also includes the following advanced features:

  • Resolutions up to 4K@50/60 (2160p), which is four times the clarity of 1080p/60 video resolution, for the ultimate video experience.
  • Up to 32 audio channels for a multi-dimensional immersive audio experience.
  • Up to 1536Hz audio sample frequency for the highest audio fidelity.
  • Simultaneous delivery of dual video streams to multiple users on the same screen.
  • Simultaneous delivery of multi-stream audio to multiple users (up to four).
  • Support for the wide angle theatrical 21:9 video aspect ratio.
  • Dynamic synchronization of video and audio streams.
  • CEC extensions provide more expanded command and control of consumer electronics devices through a single control point.

  • HDMI connectors
    There are four HDMI connector types. Type A and Type B are defined in the HDMI 1.0 specification. Type C is defined in HDMI 1.3, and Type D is defined in HDMI 1.4. Type A: 19 pins. It supports all SDTV, EDTV, and HDTV modes. It is electrically compatible with single-link DVI-D.

    Type B: 29 pins. Offers double the video bandwidth of Type A. Use for very high-resolution displays such as WQUXGA. It's electronically compatible with dual-link DVI-D.

    Type C Mini: 19 pins. This mini connector is intended for portable devices. It is smaller than Type A but has the same pin configuration and can be connected to Type A cable via an adapter or adapter cable.

    Type D Micro: 19 pins. This also has the 19-pin configuration of Type A but is about the size of a micro-USB connector.

    HDMI cable
    Recently, HDMI Licnsing, LLC announced that all able would be tested as either Standard or High-Speed cables. Referring to cables based on HDMI standard (e.g. 1.2, 1.3 etc.) is no longer allowed.

    Standard HDMI cable is designed for use with digital broadcast TV, cable TV, satellites TV, Blu-ray, and upscale DVD payers to reliably transmit up to 1080i or 720p video (or the equivalent of 75 MHz or up to 2.25 Gbps).

    High-Speed HDMI reliably transmits video resolutions of 1080p and beyond, including advanced display technologies such as 4K, 3D, and Deep Color. High-Speed HDMI is the recommended cable for 1080p video. It will perform at speeds of 600 MHz or up to 18 Gbps, the highest bandwidth urgently available over an HDMI cable.

    Additional resources and licensing information is available at HDMI.org. collapse


    Product Data Sheets (pdf)...iCOMPEL P Series 2U Publisher with HD Video Capture



    Product Data Sheets (pdf)...iCOMPEL P Series 2U Subscriber Unit

    • Video...iCompel™ How-To (Part 4): Creating layouts for Digital Signage

      This video tutorial goes into great detail to show how to create layouts for the iCOMPEL digital signage player. It demonstrates the interface and how to choose a layout canvas... more/see it nowsize for the attached screen resolution; how to upload media into folders; and how to create and design a screen layout. Also explained: adding zones to the layout canvas, defining the type of content that zones will play, resizing zones, adding content to layouts, and more. collapse

    Results 51-60 of 97 << < 6 7 8 9 10 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services