Loading


Categories (x) > Digital Signage (x)
Content Type (x) > Black Box Explains (x)

Results 11-17 of 17 < 1 2 

Black Box Explains…Digital Visual Interface (DVI) connectors.

The DVI (Digital Video Interface) technology is the standard digital transfer medium for computers while the HDMI interface is more commonly found on HDTVs, and other high-end displays.

The Digital... more/see it nowVisual Interface (DVI) standard is based on transition-minimized differential signaling (TMDS). There are two DVI formats: Single-Link and Dual-Link. Single-link cables use one TMDS-165 MHz transmitter and dual-link cables use two. The dual-link cables double the power of the transmission. A single-link cable can transmit a resolution ?of 1920 x 1200 vs. 2560 x 1600 for a dual-link cable.

There are several types of connectors: ?DVI-D, DVI-I, DVI-A, DFP, and EVC.

  • DVI-D is a digital-only connector for use between a digital video source and monitors. DVI-D eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.
  • DVI-I (integrated) supports both digital and analog RGB connections. It can transmit either a digital-to-digital signals or an analog-to-analog signal. It is used by some manufacturers on products instead of separate analog and digital connectors. If both connectors are DVI-I, you can use any DVI cable, but a DVI-I is recommended.
  • DVI-A (analog) is used to carry an DVI signal from a computer to an analog VGA device, such as a display. If one or both of your connections are DVI-A, use this cable. ?If one connection is DVI and the other is ?VGA HD15, you need a cable or adapter ?with both connectors.
  • DFP (Digital Flat Panel) was an early digital-only connector used on some displays.
  • EVC (also known as P&D, for ?Plug & Display), another older connector, handles digital and analog connections.
  • collapse


    Black Box Explains: M1 connectors.

    In 2001, the Video Electronics Standards Association (VESA) approved the M1 Display Interface System for digital displays. The M1 system is a versatile and convenient system designed for computer displays,... more/see it nowspecifically digital projectors. M1 supports both analog and digital signals.

    M1 is basically a modified DVI connector that can support DVI, VGA, USB and IEEE-1394 signals. The single connector replaces multiple connectors on projectors. An M1 cable can also be used to power accessories, such as interface cards for PDAs.

    There are three primary types of M1 connectors:
    –M1-DA (digital and analog). This is the most common connector, and it supports VGA, USB and DVI signals.
    –M1-D (digital) supports DVI signals.
    –M1-A (analog) supports VGA signals.

    The M1 standard does not cover any signal specifications or detailed connector specifications. collapse


    Black Box Explains...Wireless Ethernet standards.

    IEEE 802.11
    The precursor to 802.11b, IEEE 802.11 was introduced in 1997. It was a beginning, but 802.11 only supported speeds up to 2 Mbps. And it supported two entirely different... more/see it nowmethods of encoding—Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). This led to confusion and incompatibility between different vendors’ equipment.

    IEEE 802.11b
    802.11b is comfortably established as the most popular wireless standard. With the IEEE 802.11b Ethernet standard, wireless is fast, easy, and affordable. Wireless devices from all vendors work together seamlessly. 802.11b is a perfect example of a technology that has become both sophisticated and standardized enough to really make life simpler for its users.

    The 802.11b extension of the original 802.11 standard boosts wireless throughput from 2 Mbps all the way up to 11 Mbps. 802.11b can transmit up to 200 feet under good conditions, although this distance may be reduced considerably by the presence of obstacles such as walls.

    This standard uses DSSS. With DSSS, each bit transmitted is encoded and the encoded bits are sent in parallel across an entire range of frequencies. The code used in a transmission is known only to the sending and receiving stations. By transmitting identical signals across the entire range of frequencies, DSSS helps to reduce interference and makes it possible to recover lost data without retransmission.

    IEEE 802.11a
    The 802.11a wireless Ethernet standard is new on the scene. It uses a different band than 802.11b—the 5.8-GHz band called U-NII (Unlicensed National Information Infrastructure) in the United States. Because the U-NII band has a higher frequency and a larger bandwidth allotment than the 2.4-GHz band, the 802.11a standard achieves speeds of up to 54 Mbps. However, it’s more limited in range than 802.11b. It uses an orthogonal frequency-division multiplexing (OFDM) encoding scheme rather than FHSS or DSSS.

    IEEE 802.11g
    802.11g is an extension of 802.11b and operates in the same 2.4-GHz band as 802.11b. It brings data rates up to 54 Mbps using OFDM technology.

    Because it's actually an extension of 802.11b, 802.11g is backward-compatible with 802.11b—an 802.11b device can interface directly with an 802.11g access point. However, because 802.11g also runs on the same three channels as 802.11b, it can crowd already busy frequencies.

    Super G® is a subset of 802.11g and is a proprietary extension of the 802.11g standard that doubles throughput to 108 Mbps. Super G is not an IEEE approved standard. If you use it, you should use devices from one vendor to ensure compatibility. Super G is generally backwards compatible with 802.11g.

    802.11n
    80211n improves upon 802.11g significantly with an increase in the data rate to 600 Mbps. Channels operate at 40 MHz doubling the channel width from 20 MHz. 802.11n operates on both the 2.4 GHz and the 5 GHz bands. 802.11n also added multiple-input multiple-output antennas (MIMO).

    MIMO
    Multiple-Input/Multiple-Output (MIMO) is a part of the new IEEE 802.11n wireless standard. It’s a technique that uses multiple signals to increase the speed, reliability, and coverage of wireless networks. It transmits multiple datastreams simultaneously, increasing wireless capacity to up to 100 or even 250 Mbps.

    This wireless transmission method takes advantage of a radio transmission characteristic called multipath, which means that radio waves bouncing off surfaces such as walls and ceilings will arrive at the antenna at fractionally different times. This characteristic has long been considered to be a nuisance that impairs wireless transmission, but MIMO technology actually exploits it to enhance wireless performance.

    MIMO sends a high-speed data stream across multiple antennas by breaking it into several lower-speed streams and sending them simultaneously. Each signal travels multiple routes for redundancy.

    To pick up these multipath signals, MIMO uses multiple antennas and compares signals many times a second to select the best one. A MIMO receiver makes sense of these signals by using a mathematical algorithm to reconstruct the signals. Because it has multiple signals to choose from, MIMO achieves higher speeds at greater ranges than conventional wireless hardware does. collapse


    Black Box Explains...USB 2.0 and USB OTG.

    The Universal Serial Bus (USB) hardware (plug-and-play) standard makes connecting peripherals to your computer easy.

    USB 1.1, introduced in 1995, is the original USB standard. It has two data rates:... more/see it now12 Mbps for devices such as disk drives that need high-speed throughput and 1.5 Mbps for devices such as joysticks that need much lower bandwidth.

    In 2002, a newer specification, USB 2.0, or Hi-Speed USB 2.0, gained wide acceptance in the industry. This version is both forward- and backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1!

    This increase in bandwidth enhances the use of external peripherals that require high throughput, such as CD/DVD burners, scanners, digital cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously. USB 2.0 also supports Windows® XP through a Windows update.

    An even newer USB standard, USB On-The-Go (OTG), is also in development. USB OTG enables devices other than a PC to act as a host. It enables portable equipment—such as PDAs, cell phones, digital cameras, and digital music players—to connect to each other without the need for a PC host.

    USB 2.0 specifies three types of connectors: the A connector, the B connector, and the Mini B connector. A fourth type of connector, the Mini A (used for smaller peripherals such as mobile phones), was developed as part of the USB OTG specification. collapse


    Black Box Explains...Upgrading from VGA to DVI video.

    Many new PCs no longer have traditional Cathode Ray Tube (CRT) computer monitors with a VGA interface. The latest high-end computers have Digital Flat Panels (DFPs) with a Digital Visual... more/see it nowInterface (DVI). Although most computers still have traditional monitors, the newer DFPs are coming on strong because flat-panel displays are not only slimmer and more attractive on the desktop, but they’re also capable of providing a much sharper, clearer image than a traditional CRT monitor.

    The VGA interface was developed to support traditional CRT monitors. The DVI interface, on the other hand, is designed specifically for digital displays and supports the high resolution, the sharper image detail, and the brighter and truer colors achieved with DFPs.

    Most flat-panel displays can be connected to a VGA interface, even though using this interface results in inferior video quality. VGA simply can’t support the image quality offered by a high-end digital monitor. Sadly, because a VGA connection is possible, many computer users connect their DFPs to VGA and never experience the stunning clarity their flat-panel monitors can provide.

    It’s important to remember that for your new DFP display to work at its best, it must be connected to a DVI video interface. You should upgrade the video card in your PC when you buy your new video monitor. Your KVM switches should also support DVI if you plan to use them with DFPs. collapse


    Black Box Explains...Component video.

    Traditional Composite video standards—NTSC, PAL, or SECAM—combine luminance (brightness), chrominance (color), blanking pulses, sync pulses, and color burst information into a single signal.

    Another video standard—S-Video—separates luminance from chrominance to provide... more/see it nowsome improvement in video quality.

    But there’s a new kind of video called Component video appearing in many high-end video devices such as TVs and DVD players. Component video is an advanced digital format that separates chrominance, luminance, and synchronization into separate signals. It provides images with higher resolution and better color quality than either traditional Composite video or S-Video. There are two kinds of Component video: Y-Cb-Cr and Y-Pb-Pr. Y-Cb-Cr is often used by high-end DVD players. HDTV decoders typically use the Y-Pb-Pr Component video signal.

    Many of today’s high-end video devices such as plasma televisions and DVD players actually have three sets of video connectors: Composite, S-Video, and Component. The easiest way to improve picture quality on your high-end TV is to simply connect it using the Component video connectors rather than the Composite or S-Video connectors. Using the Component video connection enables your TV to make use of the full range of video signals provided by your DVD player or cable box, giving you a sharper image and truer colors.

    To use the Component video built into your video devices, all you need is the right cable. A Component video cable has three color-coded BNC connections at each end. For best image quality, choose a high-quality cable with adequate shielding and gold-plated connectors. collapse


    Black Box Explains...Controlling GPIO interfaces with iCOMPEL.

    With the iCOMPEL™, interactivity goes beyond touchscreen support. It also supports general-purpose input/output (GPIO) capabilities. Through an external device with a GPIO interface, the playing of on-screen information can be... more/see it nowtriggered (or halted) by signals originating from device inputs via contact closures. These can be external infrared motion detectors, light sensors, switches, push buttons, building control systems—even external SCADA collection systems.

    The possibilities are endless. You can set up a screen to provide emergency notification during crises—based on a signal sent when a secure door is opened or when an environmental condition occurs. Or simply use a screen to welcome visitors walking through your main door. You can even have a screen change from a static display to an interactive touchscreen when someone approaches.

    Just connect the external device to the iCOMPEL using our ICOMP-GPIO Adapter, which adapts the USB port on the iCOMPEL to a DB9 (RS-232) port. (NOTE: Older iCOMPEL units include a DB9 port, so the adapter isn’t needed.) This adapted port can be used for sending user-defined RS-232 strings and receiving RS-232 strings. The port also offers four input lines for binary events, such as motion detection, contact closure, or other device signaling. In some cases, you can even use the RS-232 connection to power simple detection devices.

    Each RS-232 input item can be included in a playlist and used to generate an Advance To or Change Layout on a user-defined transition of the line. The Advance To or Change Layout commands can be configured to change the media being played by the iCOMPEL.

    The iCOMPEL has the ability to control the output state of the RS-232 DTR and RTS lines. The lines are controlled by RS-232 output items, which can appear as items in the iCOMPEL playlist menu. The RS-232 output items can assign the state of one or both RS-232 output lines and optionally a string of characters to be output.

    For further details on how to activate touchscreen and contact closure capabilities on an iCOMPEL unit, contact our FREE Tech Support. Our experts can also recommend accessories for motion detection and other GPIO-controlled functions.
    collapse

    Results 11-17 of 17 < 1 2 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-800-316-7107 Black Box Network Services